Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Portal for researchers to locate information relevant to interpretation and follow-up of human genetic epidemiological discoveries, including: a range of population and case and family genetic epidemiological studies, relevant gene and sequence databases, genetic variation databases, trait measurement, resource labs, journals, software, general information, disease genes and genetic diversity.
Proper citation: Online Encyclopedia for Genetic Epidemiology studies (RRID:SCR_001825) Copy
http://www.le.ac.uk/genetics/genie/vgec/index.html
Hub of evaluated genetics-related teaching resources for teachers and learners in schools and higher education, health professionals and the general public. Suggest or submit a learning resource to the VGEC. Resources include: * simple experiments suitable for all ages * tutorial material * videos on useful techniques * current and relevant links to other evaluated resources The Virtual Genetics Education Centre (VGEC) * Provides information and genetics education resources for higher education, colleges, schools, health professionals and the general public. * Encourages collaboration in the development, evaluation and sharing of genetics education resources * provides links to, and evaluates, sources of information and educational material about genetics. * Explores innovative approaches to teaching and learning in genetics, such as the SWIFT project for example where Second Life is being used to teach some aspects of genetics in a virtual laboratory.
Proper citation: Virtual Genetics Education Centre (RRID:SCR_001958) Copy
http://www-genome.stanford.edu/
This resource hyperlinks to systematic analysis projects, resources, laboratories, and departments at Stanford University.
Proper citation: Stanford Genomic Resourses (RRID:SCR_001874) Copy
http://microbes.ucsc.edu/cgi-bin/hgGateway?db=neisMeni_MC58_1
Portal contains detailed information for Neisseria meningitidis MC58. Information include DNA molecule summary, primary annotation summary, and taxonomy. It is a tool that allows the researcher to access all of the bacterial genome sequences completed to date. Users may access information on all of the bacterial genomes or any subset of them. Information in the website about its DNA molecule includes: total number of DNA molecules, total size of all DNA molecules, number of primary annotation coding bases, and number of G + C bases. Its primary annotation summary include: total genes, protein coding genes, tRNA genes, and rRNA genes. Sponsors: The CMR was previously funded by two grants, one from the U.S. Department of Energy (DOE) and one from the National Science Foundation (NSF). It is currently partially funded by a Microbial Sequence Center (MSC) grant from the National Institute of Allergy and Infectious Diseases (NIAID)
Proper citation: Neisseria meningitidis MC58 Genome Page (RRID:SCR_002200) Copy
http://bioafrica.mrc.ac.za/index.html
The BioAfrica HIV-1 Proteomics Resource is a website that contains detailed information about the HIV-1 proteome and protease cleavage sites, as well as data-mining tools that can be used to manipulate and query protein sequence data, a BLAST tool for initiating structural analyses of HIV-1 proteins, and a proteomics tools directory. HIV Proteomics Resource contains information about each HIV-1 gene product in regard to expression, post-transcriptional / post-translational modifications, localization, functional activities, and potential interactions with viral and host macromolecules. The Proteome section contains extensive data on each of 19 HIV-1 proteins, including their functional properties, a sample analysis of HIV-1HXB2, structural models and links to other online resources. The HIV-1 Protease Cleavage Sites section provides information on the position, subtype variation and genetic evolution of Gag, Gag-Pol and Nef cleavage sites.
Proper citation: BioAfrica HIV Informatics in Africa (RRID:SCR_002295) Copy
Project to determine the gene expression profiles of normal, precancer, and cancer cells, whose generated resources are available to the cancer community. Interconnected modules provide access to all CGAP data, bioinformatic analysis tools, and biological resources allowing the user to find in silico answers to biological questions in a fraction of the time it once took in the laboratory. * Genes * Tissues * Pathways * RNAi * Chromosomes * SAGE Genie * Tools
Proper citation: Cancer Genome Anatomy Project (RRID:SCR_003072) Copy
http://www.loni.usc.edu/BIRN/Projects/Mouse/
Animal model data primarily focused on mice including high resolution MRI, light and electron microscopic data from normal and genetically modified mice. It also has atlases, and the Mouse BIRN Atlasing Toolkit (MBAT) which provides a 3D visual interface to spatially registered distributed brain data acquired across scales. The goal of the Mouse BIRN is to help scientists utilize model organism databases for analyzing experimental data. Mouse BIRN has ended. The next phase of this project is the Mouse Connectome Project (https://www.nitrc.org/projects/mcp/). The Mouse BIRN testbeds initially focused on mouse models of neurodegenerative diseases. Mouse BIRN testbed partners provide multi-modal, multi-scale reference image data of the mouse brain as well as genetic and genomic information linking genotype and brain phenotype. Researchers across six groups are pooling and analyzing multi-scale structural and functional data and integrating it with genomic and gene expression data acquired from the mouse brain. These correlated multi-scale analyses of data are providing a comprehensive basis upon which to interpret signals from the whole brain relative to the tissue and cellular alterations characteristic of the modeled disorder. BIRN's infrastructure is providing the collaborative tools to enable researchers with unique expertise and knowledge of the mouse an opportunity to work together on research relevant to pre-clinical mouse models of neurological disease. The Mouse BIRN also maintains a collaborative Web Wiki, which contains announcements, an FAQ, and much more.
Proper citation: Mouse Biomedical Informatics Research Network (RRID:SCR_003392) Copy
http://discover.nci.nih.gov/gominer/GoCommandWebInterface.jsp
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. A web program that organizes lists of genes of interest (for example, under- and overexpressed genes from a microarray experiment) for biological interpretation in the context of the Gene Ontology and automates the analysis of multiple microarrays then integrates the results across all of them in exportable output files and visualizations. High-Throughput GoMiner is an enhancement of GoMiner and is implemented with both a command line interface and a web interface. The program can also: efficiently perform automated batch processing of an arbitrary number of microarrays; produce a human- or computer-readable report that rank-orders the multiple microarray results according to the number of significant GO categories; integrate the multiple microarray results by providing organized, global clustered image map visualizations of the relationships of significant GO categories; provide a fast form of false discovery rate multiple comparisons calculation; and provide annotations and visualizations for relating transcription factor binding sites to genes and GO categories.
Proper citation: High-Throughput GoMiner (RRID:SCR_000173) Copy
http://www.genoscope.cns.fr/externe/tetraodon/
The initial objective of Genoscope was to compare the genomic sequences of this fish to that of humans to help in the annotation of human genes and to estimate their number. This strategy is based on the common genetic heritage of the vertebrates: from one species of vertebrate to another, even for those as far apart as a fish and a mammal, the same genes are present for the most part. In the case of the compact genome of Tetraodon, this common complement of genes is contained in a genome eight times smaller than that of humans. Although the length of the exons is similar in these two species, the size of the introns and the intergenic sequences is greatly reduced in this fish. Furthermore, these regions, in contrast to the exons, have diverged completely since the separation of the lineages leading to humans and Tetraodon. The Exofish method, developed at Genoscope, exploits this contrast such that the conserved regions which can be identified by comparing genomic sequences of the two species, correspond only to coding regions. Using preliminary sequencing results of the genome of Tetraodon in the year 2000, Genoscope evaluated the number of human genes at about 30,000, whereas much higher estimations were current. The progress of the annotation of the human genome has since supported the Genoscope hypothesis, with values as low as 22,000 genes and a consensus of around 25,000 genes. The sequencing of the Tetraodon genome at a depth of about 8X, carried out as a collaboration between Genoscope and the Whitehead Institute Center for Genome Research (now the Broad Institute), was finished in 2002, with the production of an assembly covering 90 of the euchromatic region of the genome of the fish. This has permitted the application of Exofish at a larger scale in comparisons with the genome of humans, but also with those of the two other vertebrates sequenced at the time (Takifugu, a fish closely related to Tetraodon, and the mouse). The conserved regions detected in this way have been integrated into the annotation procedure, along with other resources (cDNA sequences from Tetraodon and ab initio predictions). Of the 28,000 genes annotated, some families were examined in detail: selenoproteins, and Type 1 cytokines and their receptors. The comparison of the proteome of Tetraodon with those of mammals has revealed some interesting differences, such as a major diversification of some hormone systems and of the collagen molecules in the fish. A search for transposable elements in the genomic sequences of Tetraodon has also revealed a high diversity (75 types), which contrasts with their scarcity; the small size of the Tetraodon genome is due to the low abundance of these elements, of which some appear to still be active. Another factor in the compactness of the Tetraodon genome, which has been confirmed by annotation, is the reduction in intron size, which approaches a lower limit of 50-60 bp, and which preferentially affects certain genes. The availability of the sequences from the genomes of humans and mice on one hand, and Takifugu and Tetraodon on the other, provide new opportunities for the study of vertebrate evolution. We have shown that the level of neutral evolution is higher in fish than in mammals. The protein sequences of fish also diverge more quickly than those of mammals. A key mechanism in evolution is gene duplication, which we have studied by taking advantage of the anchoring of the majority of the sequences from the assembly on the chromosomes. The result of this study speaks strongly in favor of a whole genome duplication event, very early in the line of ray-finned fish (Actinopterygians). An even stronger evidence came from synteny studies between the genomes of humans and Tetraodon. Using a high-resolution synteny map, we have reconstituted the genome of the vertebrate which predates this duplication - that is, the last common ancestor to all bony vertebrates (most of the vertebrates apart from cartilaginous fish and agnaths like lamprey). This ancestral karyotype contains 12 chromosomes, and the 21 Tetraodon chromosomes derive from it by the whole genome duplication and a surprisingly small number of interchromosomal rearrangements. On the contrary, exchanges between chromosomes have been much more frequent in the lineage that leads to humans. Sponsors: The project was supported by the Consortium National de Recherche en Genomique and the National Human Genome Research Institute.
Proper citation: Tetraodon Genome Browser (RRID:SCR_007079) Copy
http://www.genes2cognition.org/
A neuroscience research program that studies genes, the brain and behavior in an integrated manner, established to elucidate the molecular mechanisms of learning and memory, and shed light on the pathogenesis of disorders of cognition. Central to G2C investigations is the NMDA receptor complex (NRC/MASC), that is found at the synapses in the central nervous system which constitute the functional connections between neurons. Changes in the receptor and associated components are thought to be in a large part responsible for the phenomenon of synaptic plasticity, that may underlie learning and memory. G2C is addressing the function of synapse proteins using large scale approaches combining genomics, proteomics and genetic methods with electrophysiological and behavioral studies. This is incorporated with computational models of the organization of molecular networks at the synapse. These combined approaches provide a powerful and unique opportunity to understand the mechanisms of disease genes in behavior and brain pathology as well as provide fundamental insights into the complexity of the human brain. Additionally, Genes to Cognition makes available its biological resources, including gene-targeting vectors, ES cell lines, antibodies, and transgenic mice, generated for its phenotyping pipeline. The resources are freely-available to interested researchers.
Proper citation: Genes to Cognition: Neuroscience Research Programme (RRID:SCR_007121) Copy
https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page
A national consortium formed to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research. The consortium is composed of seven member sites exploring the ability and feasibility of using EMR systems to investigate gene-disease relationships. Themes of bioinformatics, genomic medicine, privacy and community engagement are of particular relevance to eMERGE. The consortium uses data from the EMR clinical systems that represent actual health care events and focuses on ethical issues such as privacy, confidentiality, and interactions with the broader community.
Proper citation: eMERGE Network: electronic Medical Records and Genomics (RRID:SCR_007428) Copy
http://goldstudy.cimr.cam.ac.uk/
The Genetics of Learning Disability (GOLD) Study is aimed to identify the genes on the X chromosome that contribute to significant intellectual disability and to lead the way towards greater understanding of the mechanisms by which intellectual disability occurs. Ultimately the aim is to improve the services available to affected families. Sponsors: The work was supported by the European Community''s Seventh Framework Programme-the GEN2PHEN Project, the New South Wales Department of Health, the Australian NHMRC, the SMILE foundation, the WCH Foundation, D. Harwood, EU grant QLG3-CT- 2002-01810 (EURO-MRX), US National Institutes of Health (HD26202) to C.E.S., the South Carolina Department of Disabilities and Special Needs (SCDDSN), Action Medical Research and the Wellcome Trust.
Proper citation: Genetics of Learning Disability Study (RRID:SCR_007266) Copy
http://cardiogenomica.altervista.org/CARDIOGENOMICS/CardioGenomics%20Homepage.htm
The primary goal of the CardioGenomics PGA is to begin to link genes to structure, function, dysfunction and structural abnormalities of the cardiovascular system caused by clinically relevant genetic and environmental stimuli. The principal biological theme to be pursued is how the transcriptional network of the cardiovascular system responds to genetic and environmental stresses to maintain normal function and structure, and how this network is altered in disease. This PGA will generate a high quality, comprehensive data set for the functional genomics of structural and functional adaptation of the cardiovascular system by integrating expression data from animal models and human tissue samples, mutation screening of candidate genes in patients, and DNA polymorphisms in a well characterized general population. Such a data set will serve as a benchmark for future basic, clinical, and pharmacogenomic studies. Training and education are also a key focus of the CardioGenomics PGA. In addition to ongoing journal clubs and seminars, the PGA will be sponsoring symposia at major conferences, and developing workshops related to the areas of focus of this PGA. Information regarding upcoming events can be found in the Events section of this site, and information about training and education opportunities sponsored by CardioGenomics can be found on the Teaching and Education page. The CardioGenomics project came to a close in 2005. This server, cardiogenomics.med.harvard.edu, remains online in order to continue to distribute data that was generated by investigators under the auspices of the CardioGenomics Program for Genomic Applications (PGA). :Sponsors: This resource is supported by The National Heart, Lung and Blood Institute (NHLBI) of the NIH., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: CardioGenomics (RRID:SCR_007248) Copy
http://zmf.umm.uni-heidelberg.de/apps/zmf/argonaute/single.php
A database is a of mammalian miRNAs and their known or predicted regulatory targets. It provides information on origin of miRNAs, tissue specificity of their expressions and their known or proposed functions, their potential target genes as well as data on miRNA families based on their co-expression and proteins known to be involved in miRNA processing. This database also contains three other navigation tools that can be used to find information relating to miRNA: 1.) Gene Annotations is an information retrieval system for miRNA target genes. It provides comprehensive information from sequence databases and allows to simultaneously search PubMed with all synonyms of a given gene. 2.) miRNA Motif Finder - Argonaute predicts miRNA motifs binding to the gene sequence of the user. The miRNA mature sequences are taken from Agronaute 2 database. miRNA Motif Finder - Custom predicts miRNA motifs binding to the gene sequence, both the gene sequence and miRNA mature sequences provided by the user. 3.) miRNA Statistics provides statistics for the mature miRNA sequences from Argonaute 2 as well as for the miRNA sequences uploaded by the user. It provides statitics on the individual nucleotide as well as pattern of nucleotides apperaing in the sequence.
Proper citation: ARGONAUTE 2 - A database on mammalian microRNAs and their function in gene and pathway regulation (RRID:SCR_007553) Copy
http://www.gene-regulation.com/pub/databases.html
In an effort to strongly support the collaborative nature of scientific research, BIOBASE offers academic and non-profit organizations free access to reduced functionality versions of their products. TRANSFAC Professional provides gene regulation analysis solutions, offering the most comprehensive collection of eukaryotic gene regulation data. The professional paid subscription gives customers access to up-to-date data and tools not available in the free version. The public databases currently available for academic and non-profit organizations are: * TRANSFAC: contains data on transcription factors, their experimentally-proven binding sites, and regulated genes. Its broad compilation of binding sites allows the derivation of positional weight matrices. * TRANSPATH: provides data about molecules participating in signal transduction pathways and the reactions they are involved in, resulting in a complex network of interconnected signaling components.TRANSPATH focuses on signaling cascades that change the activities of transcription factors and thus alter the gene expression profile of a given cell. * PathoDB: is a database on pathologically relevant mutated forms of transcription factors and their binding sites. It comprises numerous cases of defective transcription factors or mutated transcription factor binding sites, which are known to cause pathological defects. * S/MARt DB: presents data on scaffold or matrix attached regions (S/MARs) of eukaryotic genomes, as well as about the proteins that bind to them. S/MARs organize the chromatin in the form of functionally independent loop domains gained increasing support. Scaffold or Matrix Attached Regions (S/MARs) are genomic DNA sequences through which the chromatin is tightly attached to the proteinaceous scaffold of the nucleus. * TRANSCompel: is a database on composite regulatory elements affecting gene transcription in eukaryotes. Composite regulatory elements consist of two closely situated binding sites for distinct transcription factors, and provide cross-coupling of different signaling pathways. * PathoSign Public: is a database which collects information about defective cell signaling molecules causing human diseases. While constituting a useful data repository in itself, PathoSign is also aimed at being a foundational part of a platform for modeling human disease processes.
Proper citation: Gene Regulation Databases (RRID:SCR_008033) Copy
http://ncv.unl.edu/Angelettilab/HPV/Database.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 23, 2016. The Human Papillomaviruses Database collects, curates, analyzes, and publishes genetic sequences of papillomaviruses and related cellular proteins. It includes molecular biologists, sequence analysts, computer technicians, post-docs and graduate research assistants. This Web site has two main branches. The first contains our four annual data books of papillomavirus information, called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. and the second contains papillomavirus genetic sequence data. There is also a New Items location where we store the latest changes to the database or any other current news of interest. Besides the compendium, we also provide genetic sequence information for papilloma viruses and related cellular proteins. Each year they publish a compendium of papillomavirus information called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. which can now be downloaded from this Web site.
Proper citation: HPV Sequence Database (RRID:SCR_008154) Copy
Online catalog of human genes and genetic disorders, for clinical features, phenotypes and genes. Collection of human genes and genetic phenotypes, focusing on relationship between phenotype and genotype. Referenced overviews in OMIM contain information on all known mendelian disorders and variety of related genes. It is updated daily, and entries contain copious links to other genetics resources.
Proper citation: OMIM (RRID:SCR_006437) Copy
DPVweb provides a central source of information about viruses, viroids and satellites of plants, fungi and protozoa. Comprehensive taxonomic information, including brief descriptions of each family and genus, and classified lists of virus sequences are provided. The database also holds detailed, curated, information for all sequences of viruses, viroids and satellites of plants, fungi and protozoa that are complete or that contain at least one complete gene. For comparative purposes, it also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA genome. The start and end positions of each feature (gene, non-translated region and the like) have been recorded and checked for accuracy. As far as possible, nomenclature for genes and proteins are standardized within genera and families. Sequences of features (either as DNA or amino acid sequences) can be directly downloaded from the website in FASTA format. The sequence information can also be accessed via client software for PC computers (freely downloadable from the website) that enable users to make an easy selection of sequences and features of a chosen virus for further analyses. The public sequence databases contain vast amounts of data on virus genomes but accessing and comparing the data, except for relatively small sets of related viruses can be very time consuming. The procedure is made difficult because some of the sequences on these databases are incorrectly named, poorly annotated or redundant. The NCBI Reference Sequence project (1) provides a comprehensive, integrated, non-redundant set of sequences, including genomic DNA, transcript (RNA) and protein products, for major research organisms. This now includes curated information for a single sequence of each fully sequenced virus species. While this is a welcome development, it can only deal with complete sequences. An important feature of DPV is the opportunity to access genes (and other features) of multiple sequences quickly and accurately. Thus, for example, it is easy to obtain the nucleotide or amino acid sequences of all the available accessions of the coat protein gene of a given virus species or for a group of viruses. To increase its usefulness further, DPVweb also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA (ssDNA) genome. Sponsors: This site is supported by the Association of Applied Biologists and the Zhejiang Academy of Agricultural Sciences, Hangzhou, People''s Republic of China.
Proper citation: Descriptions of Plant Viruses (RRID:SCR_006656) Copy
http://bejerano.stanford.edu/phenotree/
Web server to search for genes involved in given phenotypic difference between mammalian species. The mouse-referenced multiple alignment data files used to perform the forward genomics screen is also available. The webserver implements one strategy of a Forward Genomics approach aiming at matching phenotype to genotype. Forward genomics matches a given pattern of phenotypic differences between species to genomic differences using a genome-wide screen. In the implementation, the divergence of the coding region of genes in mammals is measured. Given an ancestral phenotypic trait that is lost in independent mammalian lineages, it is shown that searching for genes that are more diverged in all trait-loss species can discover genes that are involved in the given phenotype.
Proper citation: Phenotree (RRID:SCR_003591) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented October 13, 2014. The resource has moved to the NIDDKInformation Network (dkNET) project. Contact them at info_at_dknet.org with any questions. Database of large pools of data relevant to the mission of NIDDKwith the goal of developing a community-based network for integration across disciplines to include the larger DKuniverse of diseases, investigators, and potential users. The focus is on greater use of this data with the objective of adding value by breaking down barriers between sites to facilitate linking of different datasets. To date (2013/06/10), a total of 1,195 resources have been associated with one or more genes. Of 11,580 total genes associated with resources, the ten most represented are associated with 359 distinct resources. The main method by which they currently interconnect resources between the providers is via EntrezGene identifiers. A total of 780 unique genes provide the connectivity between 3,159 resource pairs across consortia. To further increase interconnectivity, the groups have been further annotating their data with additional gene identifiers, publications, and ontology terms from selected Open Biological and Biomedical Ontologies (OBO).
Proper citation: dkCOIN (RRID:SCR_004438) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.