Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.loni.usc.edu/BIRN/Projects/Mouse/
Animal model data primarily focused on mice including high resolution MRI, light and electron microscopic data from normal and genetically modified mice. It also has atlases, and the Mouse BIRN Atlasing Toolkit (MBAT) which provides a 3D visual interface to spatially registered distributed brain data acquired across scales. The goal of the Mouse BIRN is to help scientists utilize model organism databases for analyzing experimental data. Mouse BIRN has ended. The next phase of this project is the Mouse Connectome Project (https://www.nitrc.org/projects/mcp/). The Mouse BIRN testbeds initially focused on mouse models of neurodegenerative diseases. Mouse BIRN testbed partners provide multi-modal, multi-scale reference image data of the mouse brain as well as genetic and genomic information linking genotype and brain phenotype. Researchers across six groups are pooling and analyzing multi-scale structural and functional data and integrating it with genomic and gene expression data acquired from the mouse brain. These correlated multi-scale analyses of data are providing a comprehensive basis upon which to interpret signals from the whole brain relative to the tissue and cellular alterations characteristic of the modeled disorder. BIRN's infrastructure is providing the collaborative tools to enable researchers with unique expertise and knowledge of the mouse an opportunity to work together on research relevant to pre-clinical mouse models of neurological disease. The Mouse BIRN also maintains a collaborative Web Wiki, which contains announcements, an FAQ, and much more.
Proper citation: Mouse Biomedical Informatics Research Network (RRID:SCR_003392) Copy
Portal and tools for sharing and editing neurophysiological and behavioral data for brain-machine interface research. Users can search for existing data or login with their Google, Facebook, or Twitter account and upload new data. Their main focus is on supporting brain-machine interface research, so we encourage users to not just provide recordings of brain activity data, but also information about stimuli, etc., so that statistical relationships can be found between stimuli and/or subject behavior and brain activity. The Matlab tools are for writing, reading, and converting Neuroshare files, the common file format. A free, open source desktop tool for editing neurophysiological data for brain-machine interface research is also available: https://github.com/ATR-DNI/BrainLiner Since data formats aren''''t standardized between programs and researchers, data and analysis programs for data cannot be easily shared. Neuroshare was selected as the common file format. Neuroshare can contain several types of neurophysiological data because of its high flexibility, including analog time-series data and neuronal spike timing. Some applications have plug-ins or libraries available that can read Neuroshare format files, thus making Neuroshare somewhat readily usable. Neuroshare can contain several types of neurophysiological data, but there were no easy tools to convert data into the Neuroshare format, so they made and are providing a Neuroshare Converter Library and Simple Converter using the library. In future work they will make and provide many more useful tools for data sharing. Shared experiments include: EMG signal, Takemiya Exp, Reconstruct (Visual image reconstruction from human brain activity using a combination of multi-scale local image decoders), SPIKE data, Speech Imagery Dataset (Single-trial classification of vowel speech imagery using common spatial patterns), Functional Multineuron Calcium Imaging (fMCI), Rock-paper-scissors (The data was obtained from subject while he make finger-form of rock/paper/scissors). They also have a page at https://www.facebook.com/brainliner where you can contact us
Proper citation: BrainLiner (RRID:SCR_004951) Copy
Open platform for analyzing and sharing neuroimaging data from human brain imaging research studies. Brain Imaging Data Structure ( BIDS) compliant database. Formerly known as OpenfMRI. Data archives to hold magnetic resonance imaging data. Platform for sharing MRI, MEG, EEG, iEEG, and ECoG data.
Proper citation: OpenNeuro (RRID:SCR_005031) Copy
http://neurolex.org/wiki/Main_Page
A freely editable semantic wiki for community-based curation of the terms used in Neuroscience. Entries are curated and eventually incorporated into the formal NIFSTD ontology. NeuroLex also includes a Resource branch for community members to freely add neuroscience relevant resources that do not become part of NIFSTD ontology but rather make up the NIF Registry. As part of the NIF, we provide a simple search interface to many different sources of neuroscience information and data. To make this search more effective, we are constructing ontologies to help organize neuroscience concepts into category hierarchies, e.g., neuron is a cell. These categories provide the means to perform more effective searches and also to organize and understand the information that is returned. But an important adjunct to this activity is to clearly define all of the terms that we use to describe our data, e.g., anatomical terms, techniques, organism names. Because wikis provide an easy interface for communities to contribute their knowledge, we started the NeuroLex.
Proper citation: NeuroLex (RRID:SCR_005402) Copy
http://fcon_1000.projects.nitrc.org/
Collection of resting state fMRI (R-fMRI) datasets from sites around world. It demonstrates open sharing of R-fMRI data and aims to emphasize aggregation and sharing of well-phenotyped datasets.
Proper citation: 1000 Functional Connectomes Project (RRID:SCR_005361) Copy
http://www.biological-networks.org/pubs/suppl/sinomo/
Analysis-tool which identifies singular node motifs in a network. Network nodes can be described by node-motifs. It is an improvement to the method described in Costa et al. (2009).
Proper citation: SINOMO (RRID:SCR_005286) Copy
http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html#
A grassroots initiative dedicated to accelerating the scientific community''''s understanding of the neural basis of ADHD through the implementation of open data-sharing and discovery-based science. They believe that a community-wide effort focused on advancing functional and structural imaging examinations of the developing brain will accelerate the rate at which neuroscience can inform clinical practice. The ADHD-200 Global Competition invited participants to develop diagnostic classification tools for ADHD diagnosis based on functional and structural magnetic resonance imaging (MRI) of the brain. Applying their tools, participants provided diagnostic labels for previously unlabeled datasets. The competition assessed diagnostic accuracy of each submission and invited research papers describing novel, neuroscientific ideas related to ADHD diagnosis. Twenty-one international teams, from a mix of disciplines, including statistics, mathematics, and computer science, submitted diagnostic labels, with some trying their hand at imaging analysis and psychiatric diagnosis for the first time. The data for the competition was provided by the ADHD-200 Consortium. Consortium members from institutions around the world provided de-identified, HIPAA compliant imaging datasets from almost 800 children with and without ADHD. A phenotypic file including all of the test set subjects and their diagnostic codes can be downloaded. Winner is presented. The ADHD-200 consortium included: * Brown University, Providence, RI, USA (Brown) * The Kennedy Krieger Institute, Baltimore, MD, USA (KKI) * The Donders Institute, Nijmegen, The Netherlands (NeuroImage) * New York University Medical Center, New York, NY, USA (NYU) * Oregon Health and Science University, Portland, OR, USA (OHSU) * Peking University, Beijing, P.R.China (Peking 1-3) * The University of Pittsburgh, Pittsburgh, PA, USA (Pittsburgh) * Washington University in St. Louis, St. Louis, MO, USA (WashU)
Proper citation: ADHD-200 Sample (RRID:SCR_005358) Copy
A flexible software platform for distributed processing, analysis, exchange and visualization of brain imaging data. The expected result is a middleware platform that will render the processing environment (hardware, operating systems, storage servers, etc...) transparent to a remote user. Interaction with a standard web browser allows application of complex algorithm pipelines to large datasets stored at remote locations using a mixture of network available resources such as small clusters, neuroimaging tools and databases as well as Compute Canada's High Performance Computing Centers (HPC). Though the focus of CBRAIN is providing tools for use by brain imaging researchers, the platform is generalizable to other imaging domains, such as radiology, surgical planning and heart imaging, with profound consequences for Canadian medical research. CBRAIN expanded its concept to include international partners in the US, Germany and Korea. As of December 2010, GBRAIN has made significant progress with the original three partners and has developed new partners in Singapore, China, India, and Latin America. CBRAIN is currently deployed on 6 Compute Canada HPC clusters, one German HPC cluster and 3 clusters local to McGill University Campus, totaling more than 80,000 potential CPU cores.
Proper citation: CBRAIN (RRID:SCR_005513) Copy
http://www.cma.mgh.harvard.edu/iatr/
A centrally available listing of all image analysis tools that are available to the neuroscience community in order to facilitate the development, identification, and sharing of tools. It is hoped that this helps the tool developers to get their tools to a larger user community and to reduce redundancy (or at least utilize tool redundancy to facilitate optimal tool design) in tool development. This also helps tool users in identification of the existing tools for specific problems as they arise. The registry is designed to be self-moderated. This means that all tool entries are owned by some responsible party who enters the tool information, and keeps it up to date via the Web.
Proper citation: Internet Analysis Tools Registry (RRID:SCR_005638) Copy
A free, open source software package for visualization and image analysis including registration, segmentation, and quantification of medical image data. Slicer provides a graphical user interface to a powerful set of tools so they can be used by end-user clinicians and researchers alike. 3D Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac Os X. Slicer is based on VTK (http://public.kitware.com/vtk) and has a modular architecture for easy addition of new functionality. It uses an XML-based file format called MRML - Medical Reality Markup Language which can be used as an interchange format among medical imaging applications. Slicer is primarily written in C++ and Tcl.
Proper citation: 3D Slicer (RRID:SCR_005619) Copy
http://www.birncommunity.org/tools-catalog/human-imaging-database-hid/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented October 5, 2017.
Database management system developed to handle the increasingly large and diverse datasets collected as part of the MBIRN and FBIRN collaboratories and throughout clinical imaging communities at large. The HID can be extended to contain relevant information concerning experimental subjects, assessments of subjects, the experimental data collected, the experimental protocols, and other metadata normally included with experiments.
Proper citation: Human Imaging Database (RRID:SCR_006126) Copy
http://bishopw.loni.ucla.edu/AIR5/
A tool for automated registration of 3D (and 2D) images within and across subjects and within and sometimes across imaging modalities. The AIR library can easily incorporate automated image registration into site specific programs adapted to your particular needs.
Proper citation: Automated Image Registration (RRID:SCR_005944) Copy
http://freesurfer.net/fswiki/HippocampalSubfieldSegmentation
A software package for automatic segmentation of hippocampal subfields in magnetic resonance imges. Given a pair of T1-weighted and T2-weighted images (the latter acquired using a protocol tuned for hippocampus imaging), ASHS will automatically label main subfields of the hippocampus, and some extra-hippocampal structures, using multi-atlas segmentation. The main method is described in the Yushkevich et al. 2011 Neuroimage paper (http://tinyurl.com/cffrp3p). * execution requires: Advanced Normalization Tools, FSL
Proper citation: Segmentation of Hippocampus Subfields (RRID:SCR_005996) Copy
http://web.mit.edu/swg/software.htm
Toolbox for post-processing fMRI data. Includes software for comprehensive analysis of sources of artifacts in timeseries data including spiking and motion. Most compatible with SPM processing, but adaptable for FSL as well. * Operating System: MacOS, Windows, Linux * Programming Language: MATLAB * Supported Data Format: ANALYZE
Proper citation: Artifact Detection Tools (RRID:SCR_005994) Copy
http://www.brain-map.org/api/index.html
API and demo application for accessing the Allen Brain Atlas Mouse Brain data. Data available via the API includes download high resolution images, expression data from a 3D volume, 3D coordinates of the Allen Reference Atlas, and searching genes with similar gene expression profiles using NeuroBlast. Data made available includes: * High resolution images for gene expression, connectivity, and histology experiments, as well as annotated atlas images * 3-D expression summaries registered to a reference space for the Mouse Brain and Developing Mouse Brain * Primary microarray results for the Human Brain and Non-Human Primate * RNA sequencing results for the Developing Human Brain * MRI and DTI files for Human Brain The API consists of the following resources: * RESTful model access * Image download service * 3-D expression summary download service * Differential expression search services * NeuroBlast correlative searches * Image-to-image synchronization service * Structure graph download service
Proper citation: Allen Brain Atlas API (RRID:SCR_005984) Copy
A web-compliant application that allows connectomics visualization by converting datasets to web-optimized tiles, delivering volume transforms to client devices, and providing groups of users with connectome annotation tools and data simultaneously via conventional internet connections. Viking is an extensible tool for connectomics analysis and is generalizable to histomics applications.
Proper citation: Viking Viewer for Connectomics (RRID:SCR_005986) Copy
http://www.unc.edu/~grwu/Software.html
A software plugin for 3D Slicer that matches morphological signatures of medical images automatically. HAMMER is an acronym for Hierarchical Attribute Matching Mechanism for Elastic Registration (Dinggang Shen, Christos Davatzikos, HAMMER: Hierarchical Attribute Matching Mechanism for Elastic Registration, IEEE Trans. on Medical Imaging, 21(11):1421-1439, Nov 2002) - an elastic registration algorithm for medical images, matching morphological signatures of images in a hierarchical multi-scale regime. White matter lesion (WML) segmentation is a novel multi-spectral WML segmentation protocol via incorporating information from T1-w, T2-w, PD-w and FLAIR MR brain images. (Zhiqiang Lao, Dinggang Shen, Dengfeng Liu, Abbas F Jawad, Elias R Melhem, Lenore J Launer, Nick R Bryan, Christos Davatzikos, Computer-Assisted Segmentation of White Matter Lesions in 3D MR images, Using Pattern Recognition, Academic Radiology, 15(3):300-313, March 2008).
Proper citation: Hammer And WML Modules for 3D Slicer (RRID:SCR_005980) Copy
http://www.nitrc.org/projects/abc
A comprehensive processing pipeline developed and used at University of North Carolina and University of Utah for brain MRIs. The processing pipeline includes image registration, filtering, segmentation and inhomogeneity correction. The tool is cross-platform and can be run within 3D Slicer or as a stand-alone program. The image segmentation algorithm is based on the EMS software developed by Koen van Leemput.
Proper citation: ABC (Atlas Based Classification) (RRID:SCR_005981) Copy
http://openconnectomeproject.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 9, 2023. Connectomes repository to facilitate the analysis of connectome data by providing a unified front for connectomics research. With a focus on Electron Microscopy (EM) data and various forms of Magnetic Resonance (MR) data, the project aims to make state-of-the-art neuroscience open to anybody with computer access, regardless of knowledge, training, background, etc. Open science means open to view, play, analyze, contribute, anything. Access to high resolution neuroanatomical images that can be used to explore connectomes and programmatic access to this data for human and machine annotation are provided, with a long-term goal of reconstructing the neural circuits comprising an entire brain. This project aims to bring the most state-of-the-art scientific data in the world to the hands of anybody with internet access, so collectively, we can begin to unravel connectomes. Services: * Data Hosting - Their Bruster (brain-cluster) is large enough to store nearly any modern connectome data set. Contact them to make your data available to others for any purpose, including gaining access to state-of-the-art analysis and machine vision pipelines. * Web Viewing - Collaborative Annotation Toolkit for Massive Amounts of Image Data (CATMAID) is designed to navigate, share and collaboratively annotate massive image data sets of biological specimens. The interface is inspired by Google Maps, enhanced to allow the exploration of 3D image data. View the fork of the code or go directly to view the data. * Volume Cutout Service - RESTful API that enables you to select any arbitrary volume of the 3d database (3ddb), and receive a link to download an HDF5 file (for matlab, C, C++, or C#) or a NumPy pickle (for python). Use some other programming language? Just let them know. * Annotation Database - Spatially co-registered volumetric annotations are compactly stored for efficient queries such as: find all synapses, or which neurons synapse onto this one. Create your own annotations or browse others. *Sample Downloads - In addition to being able to select arbitrary downloads from the datasets, they have also collected a few choice volumes of interest. * Volume Viewer - A web and GPU enabled stand-alone app for viewing volumes at arbitrary cutting planes and zoom levels. The code and program can be downloaded. * Machine Vision Pipeline - They are building a machine vision pipeline that pulls volumes from the 3ddb and outputs neural circuits. - a work in progress. As soon as we have a stable version, it will be released. * Mr. Cap - The Magnetic Resonance Connectome Automated Pipeline (Mr. Cap) is built on JIST/MIPAV for high-throughput estimation of connectomes from diffusion and structural imaging data. * Graph Invariant Computation - Upload your graphs or streamlines, and download some invariants. * iPad App - WholeSlide is an iPad app that accesses utilizes our open data and API to serve images on the go.
Proper citation: Open Connectome Project (RRID:SCR_004232) Copy
Collection based on a collaborative effort of popular neuroscience research software for the Debian operating system as well as Ubuntu and other derivatives. Popular packages include AFNI, FSL, PyMVPA and many others. It contains both unofficial or prospective packages which are not (yet) available from the main Debian archive, as well as backported or simply rebuilt packages also available elsewhere. A listing of current and planned projects is available if you want to get involved. The main goal of the project is to provide a versatile and convenient environment for neuroscientific research that is based on open-source software. To this end, the project offers a package repository that complements the main Debian (and Ubuntu) archive. NeuroDebian is not yet another Linux distribution, but rather an effort inside the Debian project itself. Software packages are fully integrated into the Debian system and from there will eventually migrate into Ubuntu as well. With NeuroDebian, installing and updating neuroscience software is no different from any other part of the operating system. Maintaining a research software environment becomes as easy as installing an editor. There is also virtual machine to test NeuroDebian on Windows or Mac OS. If you want to see your software packaged for Debian, please drop them a note.
Proper citation: neurodebian (RRID:SCR_004401) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.