Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://vortex.cs.wayne.edu/projects.htm#Onto-Design
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 6,2023. Many Laboratories chose to design and print their own microarrays. At present, the choice of the genes to include on a certain microarray is a very laborious process requiring a high level of expertise. Onto-Design database is able to assist the designers of custom microarrays by providing the means to select genes based on their experiment. Design custom microarrays based on GO terms of interest. User account required. Platform: Online tool
Proper citation: Onto-Design (RRID:SCR_000601) Copy
http://www.ucl.ac.uk/cardiovasculargeneontology/
Full Gene Ontology annotation to genes associated with cardiovascular processes. Every GO annotation made, is attributed to an identified source, such as a publication identifier (PMID), and an indication of the type of evidence which supports the association between the gene product and the GO term. Over 4,000 cardiovascular associated genes have been identified. A variety of tools have been provided to enable cardiovascular scientists to review the annotation of their ''''favorite'''' gene and suggest information that may be missing, inaccurate or incomplete in these annotations. Annotation suggestions can be sent through the feedback form or by email. The Gene Ontology (GO) vocabulary is the established standard for the functional annotation of gene products. By using GO to curate scientific literature and by integrating results from high-quality high-throughput experiments they will create an information-rich resource for the cardiovascular-research community, enabling researchers to rapidly evaluate and interpret existing data and generate hypotheses to guide future research.
Proper citation: Cardiovascular Gene Ontology Annotation Initiative (RRID:SCR_004795) Copy
http://www.geneontology.org/GO.refgenome.shtml
The GO Consortium coordinates an effort to maximize and optimize the GO annotation of a large and representative set of key genomes, known as ''reference genomes''. The goal of the Reference Genome Annotation project is to completely annotate twelve reference genomes so that those annotations may be used to effectively seed the automatic annotation efforts of other genomes. With more and more genomes being sequenced, we are in the middle of an explosion of genomic information. The limited resources to manually annotate the growing number of sequenced genomes imply that automatic annotation will be the method of choice for many groups. The Reference Genome project has two primary goals: to increase the depth and breadth of annotations for genes in each of the organisms in the project, and to create data sets and tools that enable other genome annotation efforts to infer GO annotations for homologous genes in their organisms. In addition, the project has several important incidental benefits, such as increasing annotation consistency across genome databases, and providing important improvements to the GO''s logical structure and biological content. All GO annotations from this project are included in the gene association files that each group submits to GO. Annotations can also be viewed using the GO search engine and browser AmiGO. Annotated families can be viewed with the homolog set browser.
Proper citation: RefGenome (RRID:SCR_004263) Copy
An integrated database of human maladies and their annotations, modeled on the architecture and richness of the popular GeneCards database of human genes. The database contains 17,705 diseases, consolidated from 28 sources.
Proper citation: MalaCards (RRID:SCR_005817) Copy
http://www.jcvi.org/charprotdb/index.cgi/home
The Characterized Protein Database, CharProtDB, is designed and being developed as a resource of expertly curated, experimentally characterized proteins described in published literature. For each protein record in CharProtDB, storage of several data types is supported. It includes functional annotation (several instances of protein names and gene symbols) taxonomic classification, literature links, specific Gene Ontology (GO) terms and GO evidence codes, EC (Enzyme Commisssion) and TC (Transport Classification) numbers and protein sequence. Additionally, each protein record is associated with cross links to all public accessions in major protein databases as ��synonymous accessions��. Each of the above data types can be linked to as many literature references as possible. Every CharProtDB entry requires minimum data types to be furnished. They are protein name, GO terms and supporting reference(s) associated to GO evidence codes. Annotating using the GO system is of importance for several reasons; the GO system captures defined concepts (the GO terms) with unique ids, which can be attached to specific genes and the three controlled vocabularies of the GO allow for the capture of much more annotation information than is traditionally captured in protein common names, including, for example, not just the function of the protein, but its location as well. GO evidence codes implemented in CharProtDB directly correlate with the GO consortium definitions of experimental codes. CharProtDB tools link characterization data from multiple input streams through synonymous accessions or direct sequence identity. CharProtDB can represent multiple characterizations of the same protein, with proper attribution and links to database sources. Users can use a variety of search terms including protein name, gene symbol, EC number, organism name, accessions or any text to search the database. Following the search, a display page lists all the proteins that match the search term. Click on the protein name to view more detailed annotated information for each protein. Additionally, each protein record can be annotated.
Proper citation: CharProtDB: Characterized Protein Database (RRID:SCR_005872) Copy
A curated repository of more than 206000 regulatory associations between transcription factors (TF) and target genes in Saccharomyces cerevisiae, based on more than 1300 bibliographic references. It also includes the description of 326 specific DNA binding sites shared among 113 characterized TFs. Further information about each Yeast gene has been extracted from the Saccharomyces Genome Database (SGD). For each gene the associated Gene Ontology (GO) terms and their hierarchy in GO was obtained from the GO consortium. Currently, YEASTRACT maintains a total of 7130 terms from GO. The nucleotide sequences of the promoter and coding regions for Yeast genes were obtained from Regulatory Sequence Analysis Tools (RSAT). All the information in YEASTRACT is updated regularly to match the latest data from SGD, GO consortium, RSA Tools and recent literature on yeast regulatory networks. YEASTRACT includes DISCOVERER, a set of tools that can be used to identify complex motifs found to be over-represented in the promoter regions of co-regulated genes. DISCOVERER is based on the MUSA algorithm. These algorithms take as input a list of genes and identify over-represented motifs, which can then be compared with transcription factor binding sites described in the YEASTRACT database.
Proper citation: Yeast Search for Transcriptional Regulators And Consensus Tracking (RRID:SCR_006076) Copy
http://pbildb1.univ-lyon1.fr/virhostnet/
Public knowledge base specialized in the management and analysis of integrated virus-virus, virus-host and host-host interaction networks coupled to their functional annotations. It contains high quality and up-to-date information gathered and curated from public databases (VirusMint, Intact, HIV-1 database). It allows users to search by host gene, host/viral protein, gene ontology function, KEGG pathway, Interpro domain, and publication information. It also allows users to browse viral taxonomy.
Proper citation: VirHostNet: Virus-Host Network (RRID:SCR_005978) Copy
Database that represents a centralized platform to visually depict and integrate information pertaining to domain architecture, post-translational modifications, interaction networks and disease association for each protein in the human proteome. All the information in HPRD has been manually extracted from the literature by expert biologists who read, interpret and analyze the published data.
Proper citation: HPRD - Human Protein Reference Database (RRID:SCR_007027) Copy
https://neuinfo.org/mynif/search.php?q=*&t=indexable&list=cover&nif=nlx_154697-2
A virtual database of annotations made by 50 database providers (April 2014) - and growing (see below), that map data to publication information. All NIF Data Federation sources can be part of this virtual database as long as they indicate the publications that correspond to data records. The format that NIF accepts is the PubMed Identifier, category or type of data that is being linked to, and a data record identifier. A subset of this data is passed to NCBI, as LinkOuts (links at the bottom of PubMed abstracts), however due to NCBI policies the full data records are not currently associated with PubMed records. Database providers can use this mechanism to link to other NCBI databases including gene and protein, however these are not included in the current data set at this time. (To view databases available for linking see, http://www.ncbi.nlm.nih.gov/books/NBK3807/#files.Databases_Available_for_Linking ) The categories that NIF uses have been standardized to the following types: * Resource: Registry * Resource: Software * Reagent: Plasmid * Reagent: Antibodies * Data: Clinical Trials * Data: Gene Expression * Data: Drugs * Data: Taxonomy * Data: Images * Data: Animal Model * Data: Microarray * Data: Brain connectivity * Data: Volumetric observation * Data: Value observation * Data: Activation Foci * Data: Neuronal properties * Data: Neuronal reconstruction * Data: Chemosensory receptor * Data: Electrophysiology * Data: Computational model * Data: Brain anatomy * Data: Gene annotation * Data: Disease annotation * Data: Cell Model * Data: Chemical * Data: Pathways For more information refer to Create a LinkOut file, http://neuinfo.org/nif_components/disco/interoperation.shtm Participating resources ( http://disco.neuinfo.org/webportal/discoLinkoutServiceSummary.do?id=4 ): * Addgene http://www.addgene.org/pgvec1 * Animal Imaging Database http://aidb.crbs.ucsd.edu * Antibody Registry http://www.neuinfo.org/products/antibodyregistry/ * Avian Brain Circuitry Database http://www.behav.org/abcd/abcd.php * BAMS Connectivity http://brancusi.usc.edu/ * Beta Cell Biology Consortium http://www.betacell.org/ * bioDBcore http://biodbcore.org/ * BioGRID http://thebiogrid.org/ * BioNumbers http://bionumbers.hms.harvard.edu/ * Brain Architecture Management System http://brancusi.usc.edu/bkms/ * Brede Database http://hendrix.imm.dtu.dk/services/jerne/brede/ * Cell Centered Database http://ccdb.ucsd.edu * CellML Model Repository http://www.cellml.org/models * CHEBI http://www.ebi.ac.uk/chebi/ * Clinical Trials Network (CTN) Data Share http://www.ctndatashare.org/ * Comparative Toxicogenomics Database http://ctdbase.org/ * Coriell Cell Repositories http://ccr.coriell.org/ * CRCNS - Collaborative Research in Computational Neuroscience - Data sharing http://crcns.org * Drug Related Gene Database https://confluence.crbs.ucsd.edu/display/NIF/DRG * DrugBank http://www.drugbank.ca/ * FLYBASE http://flybase.org/ * Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/ * Gene Ontology Tools http://www.geneontology.org/GO.tools.shtml * Gene Weaver http://www.GeneWeaver.org * GeneDB http://www.genedb.org/Homepage * Glomerular Activity Response Archive http://gara.bio.uci.edu * GO http://www.geneontology.org/ * Internet Brain Volume Database http://www.cma.mgh.harvard.edu/ibvd/ * ModelDB http://senselab.med.yale.edu/modeldb/ * Mouse Genome Informatics Transgenes ftp://ftp.informatics.jax.org/pub/reports/MGI_PhenotypicAllele.rpt * NCBI Taxonomy Browser http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html * NeuroMorpho.Org http://neuromorpho.org/neuroMorpho * NeuronDB http://senselab.med.yale.edu/neurondb * SciCrunch Registry http://neuinfo.org/nif/nifgwt.html?tab=registry * NIF Registry Automated Crawl Data http://lucene1.neuinfo.org/nif_resource/current/ * NITRC http://www.nitrc.org/ * Nuclear Receptor Signaling Atlas http://www.nursa.org * Olfactory Receptor DataBase http://senselab.med.yale.edu/ordb/ * OMIM http://omim.org * OpenfMRI http://openfmri.org * PeptideAtlas http://www.peptideatlas.org * RGD http://rgd.mcw.edu * SFARI Gene: AutDB https://gene.sfari.org/autdb/Welcome.do * SumsDB http://sumsdb.wustl.edu/sums/ * Temporal-Lobe: Hippocampal - Parahippocampal Neuroanatomy of the Rat http://www.temporal-lobe.com/ * The Cell: An Image Library http://www.cellimagelibrary.org/ * Visiome Platform http://platform.visiome.neuroinf.jp/ * WormBase http://www.wormbase.org * YPED http://medicine.yale.edu/keck/nida/yped.aspx * ZFIN http://zfin.org
Proper citation: Integrated Manually Extracted Annotation (RRID:SCR_008876) Copy
https://omictools.com/ecgene-tool
Database of functional annotation for alternatively spliced genes. It uses a gene-modeling algorithm that combines the genome-based expressed sequence tag (EST) clustering and graph-theoretic transcript assembly procedures. It contains genome, mRNA, and EST sequence data, as well as a genome browser application. Organisms included in the database are human, dog, chicken, fruit fly, mouse, rhesus, rat, worm, and zebrafish. Annotation is provided for the whole transcriptome, not just the alternatively spliced genes. Several viewers and applications are provided that are useful for the analysis of the transcript structure and gene expression. The summary viewer shows the gene summary and the essence of other annotation programs. The genome browser and the transcript viewer are available for comparing the gene structure of splice variants. Changes in the functional domains by alternative splicing can be seen at a glance in the transcript viewer. Two unique ways of analyzing gene expression is also provided. The SAGE tags deduced from the assembled transcripts are used to delineate quantitative expression patterns from SAGE libraries available publicly. The cDNA libraries of EST sequences in each cluster are used to infer qualitative expression patterns.
Proper citation: ECgene: Gene Modeling with Alternative Splicing (RRID:SCR_007634) Copy
http://psychiatry.igm.jhmi.edu/SynaptomeDB/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. Ontology-based knowledgebase for synaptic genes. These genes encode components of the synapse including neurotransmitters and their receptors, adhesion / cytoskeletal proteins, scaffold proteins, transporters, and others. It integrates various and complex data sources for synaptic genes and proteins., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: SynaptomeDB (RRID:SCR_000157) Copy
http://mitominer.mrc-mbu.cam.ac.uk/
A database of mitochondrial proteomics data. It includes two sets of proteins: the MitoMiner Reference Set, which has 10477 proteins from 12 species; and MitoCarta, which has 2909 proteins from mouse and human mitochondrial proteins. MitoMiner provides annotation from the Gene Ontology (GO) and UniProt databases. This reference set contains all proteins that are annotated by either of these resources as mitochondrial in any of the species included in MitoMiner. MitoMiner data via is available via Application Programming Interface (API). The client libraries are provided in Perl, Python, Ruby and Java.
Proper citation: MitoMiner (RRID:SCR_001368) Copy
http://www.lipidmaps.org/data/proteome/LMPD.php
Database of lipid related proteins representing human and mouse proteins involved in lipid metabolism. Collection of lipid related genes and proteins contains data for genes and proteins from Homo sapiens, Mus musculus, Rattus norvegicus, Saccharomyces cerevisiae, Caenorhabditis elegans, Escherichia coli, Macaca mulata, Drosophila melanogaster, Arabidopsis thaliana and Danio rerio.
Proper citation: LIPID MAPS Proteome Database (RRID:SCR_003062) Copy
http://integrativebiology.org/
Database for molecular interaction information integrated with various other bio-entity information, including pathways, diseases, gene ontology (GO) terms, species and molecular types. The information is obtained from several manually curated databases and automatic extraction from literature. There are protein-protein interaction, gene/protein regulation and protein-small molecule interaction information stored in the database. The interaction information is linked with relevant GO terms, pathway, disease and species names. Interactions are also linked to the PubMed IDs of the corresponding abstracts the interactions were obtained from. Manually curated molecular interaction information was obtained from BioGRID, IntAct, NCBI Gene, and STITCH database. Pathway related information was obtained from KEGG database, Pathway Interaction database and Reactome. Disease information was obtained from PharmGKB and KEGG database. Gene ontology terms and related information was obtained from Gene Ontology database and GOA database.
Proper citation: Integrated Molecular Interaction Database (RRID:SCR_003546) Copy
http://150.216.56.64/index.php
Database platform for cotton expressed sequence tag (EST)-related information, covering assembled contigs, function annotation, analysis of GO and KEGG, SNP, miRNA, SSR-related marker information.
Proper citation: Cotton EST Database (RRID:SCR_003301) Copy
http://dbserv2.informatik.uni-leipzig.de:8080/onex/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 6,2023. Web-based application that integrates versions of 16 life science ontologies including the Gene Ontology, NCI Thesaurus and selected OBO ontologies with data leading back to 2002 in a common repository to explore ontology changes. It allows to study and apply the evolution of these integrated ontologies on three different levels. It provides global ontology evolution statistics and ontology-specific evolution trends for concepts and relationships and it allows the migration of annotations in case a new ontology version was released
Proper citation: OnEx - Ontology Evolution Explorer (RRID:SCR_000602) Copy
http://cellfinder.de/about/ontology/
Structured vocabulary to organize cell-associated data and to place these data in clearly defined semantic relations to other biological facts. It describes cell types, their properties and origin and links this information to other existing ontologies like the Cell Ontology (CL), Foundational Model of Anatomy (FMA), Gene Ontology (GO), Mouse Anatomy and others using the top-level ontology BioTop.
Proper citation: CELDA Ontology (RRID:SCR_001601) Copy
http://www.cs.ualberta.ca/~bioinfo/PA/GOSUB/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 30, 2015. Refer to Proteome Analyst 3.0. Subcellular Localization and GO General Molecular Function predictions for many model organism proteomes using Protein Analyst, with a very high coverage rate. When users blast their proteins against the database of results, they will not only be shown blast homologs from the model organisms, but also the Subcellular Localization and GO General Molecular Function predictions as well.
Proper citation: Proteome Analyst PA-GOSUB (RRID:SCR_008234) Copy
https://scicrunch.org/resolver/SCR_002250
THIS RESOURCE IS NO LONGER IN SERVICE. Documented Jul 19, 2024. Metadatabase manually curated that provides web accessible tools related to genomics, transcriptomics, proteomics and metabolomics. Used as informative directory for multi-omic data analysis.
Proper citation: OMICtools (RRID:SCR_002250) Copy
http://purl.bioontology.org/ontology/GO-EXT
An extension of the Gene Ontology.
Proper citation: Gene Ontology Extension (RRID:SCR_010327) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.