Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://human.brain-map.org/static/brainexplorer
Multi modal atlas of human brain that integrates anatomic and genomic information, coupled with suite of visualization and mining tools to create open public resource for brain researchers and other scientists. Data include magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), histology and gene expression data derived from both microarray and in situ hybridization (ISH) approaches. Brain Explorer 2 is desktop software application for viewing human brain anatomy and gene expression data in 3D.
Proper citation: Allen Human Brain Atlas (RRID:SCR_007416) Copy
http://zmf.umm.uni-heidelberg.de/apps/zmf/argonaute/single.php
A database is a of mammalian miRNAs and their known or predicted regulatory targets. It provides information on origin of miRNAs, tissue specificity of their expressions and their known or proposed functions, their potential target genes as well as data on miRNA families based on their co-expression and proteins known to be involved in miRNA processing. This database also contains three other navigation tools that can be used to find information relating to miRNA: 1.) Gene Annotations is an information retrieval system for miRNA target genes. It provides comprehensive information from sequence databases and allows to simultaneously search PubMed with all synonyms of a given gene. 2.) miRNA Motif Finder - Argonaute predicts miRNA motifs binding to the gene sequence of the user. The miRNA mature sequences are taken from Agronaute 2 database. miRNA Motif Finder - Custom predicts miRNA motifs binding to the gene sequence, both the gene sequence and miRNA mature sequences provided by the user. 3.) miRNA Statistics provides statistics for the mature miRNA sequences from Argonaute 2 as well as for the miRNA sequences uploaded by the user. It provides statitics on the individual nucleotide as well as pattern of nucleotides apperaing in the sequence.
Proper citation: ARGONAUTE 2 - A database on mammalian microRNAs and their function in gene and pathway regulation (RRID:SCR_007553) Copy
http://go.princeton.edu/cgi-bin/GOTermFinder
The Generic GO Term Finder finds the significant GO terms shared among a list of genes from an organism, displaying the results in a table and as a graph (showing the terms and their ancestry). The user may optionally provide background information or a custom gene association file or filter evidence codes. This tool is capable of batch processing multiple queries at once. GO::TermFinder comprises a set of object-oriented Perl modules GO::TermFinder can be used on any system on which Perl can be run, either as a command line application, in single or batch mode, or as a web-based CGI script. This implementation, developed at the Lewis-Sigler Institute at Princeton, depends on the GO-TermFinder software written by Gavin Sherlock and Shuai Weng at Stanford University and the GO:View module written by Shuai Weng. It is made publicly available through the GMOD project. The full source code and documentation for GO:TermFinder are freely available from http://search.cpan.org/dist/GO-TermFinder/. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: Generic GO Term Finder (RRID:SCR_008870) Copy
APID Interactomes (Agile Protein Interactomes DataServer) provides information on the protein interactomes of numerous organisms, based on the integration of known experimentally validated protein-protein physical interactions (PPIs). The interactome data includes a report on quality levels and coverage over the proteomes for each organism included. APID integrates PPIs from primary databases of molecular interactions (BIND, BioGRID, DIP, HPRD, IntAct, MINT) and also from experimentally resolved 3D structures (PDB) where more than two distinct proteins have been identified. This collection references protein interactors, through a UniProt identifier.
Proper citation: Agile Protein Interactomes DataServer (RRID:SCR_008871) Copy
http://plantgrn.noble.org/LegumeIP/
LegumeIP is an integrative database and bioinformatics platform for comparative genomics and transcriptomics to facilitate the study of gene function and genome evolution in legumes, and ultimately to generate molecular based breeding tools to improve quality of crop legumes. LegumeIP currently hosts large-scale genomics and transcriptomics data, including: * Genomic sequences of three model legumes, i.e. Medicago truncatula, Glycine max (soybean) and Lotus japonicus, including two reference plant species, Arabidopsis thaliana and Poplar trichocarpa, with the annotation based on UniProt TrEMBL, InterProScan, Gene Ontology and KEGG databases. LegumeIP covers a total 222,217 protein-coding gene sequences. * Large-scale gene expression data compiled from 104 array hybridizations from L. japonicas, 156 array hybridizations from M. truncatula gene atlas database, and 14 RNA-Seq-based gene expression profiles from G. max on different tissues including four common tissues: Nodule, Flower, Root and Leaf. * Systematic synteny analysis among M. truncatula, G. max, L. japonicus and A. thaliana. * Reconstruction of gene family and gene family-wide phylogenetic analysis across the five hosted species. LegumeIP features comprehensive search and visualization tools to enable the flexible query on gene annotation, gene family, synteny, relative abundance of gene expression.
Proper citation: LegumeIP (RRID:SCR_008906) Copy
http://meme.nbcr.net/meme/cgi-bin/gomo.cgi
Gene Ontology for Motifs (GOMO) is an alignment- and threshold-free comparative genomics approach for assigning functional roles to DNA regulatory motifs from DNA sequence. The algorithm detects associations between a user-specified DNA regulatory motif (expressed as a position weight matrix; PWM) and Gene Ontology terms. The original method for predicting the roles of transcription factors (TFs starts with a PWM motif describing the DNA-binding affinity of the TF. GOMO uses the PWM to score the promoter region of each gene in the genome for its likelihood to be bound by the TF. The resulting ''''affinity'''' scores are then used to test each term in the Gene Ontology for association with high-scoring genes. The algorithm was subsequently extended to leverage conserved signals using multiple, related species in a comparative approach, which greatly improves the resulting annotations. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GOMO - Gene Ontology for Motifs (RRID:SCR_008864) Copy
http://vortex.cs.wayne.edu/projects.htm#OE2GO
Onto-Express is a web-based tool in the Onto-Tools suite that performs automated function profiling for a list of differentially expressed genes. However, Onto-Express does not support functional profiling for the organisms that do not have annotations in public domain, or use of custom (i.e. user-defined) ontologies. This limitation is also true for most of the other existing tools for functional profiling, which means that researchers working with uncommon organisms and/or new annotations or ontologies may be forced to construct such profiles manually. Onto-Express To Go (OE2GO) is a new tool added to the Onto-Tools ensemble to address these issues. OE2GO is built on top of OE to leverage its existing functionality. In OE2GO, the users now have an option to use either the Onto-Tools database as a source of functional annotations or provide their own annotations in a separate file. Currently, OE2GO supports annotation file in the Gene Ontology format. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: Onto-Express To Go (OE2GO) (RRID:SCR_008854) Copy
http://crezoo.crt-dresden.de/crezoo/
Database of helpful set of CreERT2 driver lines expressing in various regions of the developing and adult zebrafish. The lines have been generated via the insertion of a mCherry-T2A-CreERT2 in a gene trap approach or by using promoter fragments driving CreERT2. You can search the list of all transgenic lines or single entries by insertions (gene) or expression patterns (anatomy/region). In most cases the CreERT2 expression profile using in situ hybridization at 24 hpf and 48 hpf is shown, but also additional information (e.g. mCherry or CreERT2 expression at adult stages, transactivation of a Cre-dependent reporter line) is displayed. Currently, not all insertions have been mapped to a genomic location but the database will be regularly updated adding newly generated insertions and mapping information. Your help in improving and broadening the database by giving your opinion or knowledge of expression patterns is highly appreciated.
Proper citation: CreZoo (RRID:SCR_008919) Copy
Web application for simulating SNP genotypes for case-control and affected-child trio studies by resampling from Phase I/II HapMap SNP data. The user provides a list of SNPs to be genotyped, along with a disease model file that describes causal SNPs and their effect sizes. The simulation tool is appropriate for candidate regions or whole-genome scans. (entry from Genetic Analysis Software)
Proper citation: HAP-SAMPLE (RRID:SCR_009234) Copy
http://pages.stat.wisc.edu/~yandell/qtl/software/qtlbim/
Software library for QTL Bayesian Interval Mapping that provides a Bayesian model selection approach to map multiple interacting QTL. It works on experimentally inbred lines and performs a genome-wide search to locate multiple potential QTL. The package can handle continuous, binary and ordinal traits. (entry from Genetic Analysis Software)
Proper citation: R/QTLBIM (RRID:SCR_009375) Copy
http://rgd.mcw.edu/rgdCuration/?module=portal&func=show&name=renal
An integrated resource for information on genes, QTLs and strains associated with a variety of kidney and renal system conditions such as Renal Hypertension, Polycystic Kidney Disease and Renal Insufficiency, as well as Kidney Neoplasms.
Proper citation: Renal Disease Portal (RRID:SCR_009030) Copy
Database of age-related changes covering different biological levels, including molecular, physiological, psychological and pathological age-related data, to create an interactive portal that serves as a centralized collection of human aging changes and pathologies. To facilitate integrative, system-level studies of aging, the DAA provides a centralized source for aging-related data as well as basic tools to query and visualize the data, including anatomical models. Data in the DAA is manually curated from the literature and retrieved from public databases. For more detailed analyses users are able to download the entire database. More information on how to use the DAA is available on the help page. The DAA primarily focuses on human aging, but also includes supplementary mouse data, in particular gene expression data, to enhance and expand the information on human aging. If you would like to contribute to the database yourself, for instance if you have new data on aging, please use the contribute page to submit your data.
Proper citation: Digital Ageing Atlas (RRID:SCR_009020) Copy
http://www.sph.umich.edu/csg/abecasis/MACH/download/
QTL analysis based on imputed dosages/posterior_probabilities.
Proper citation: MACH (RRID:SCR_009621) Copy
http://www.eplantsenescence.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 26, 2019. Database of leaf senescence to collect SAGs, mutants, phenotypes and literature references. Leaf senescence has been recognized as the last phase of plant development, a highly ordered process regulated by genes called SAGs. By integrating the data from mutant studies and transgenic analysis, they collected many SAGs related to regulation of the leaf senescence in various species. Additionally, they have categorized SAGs according to their functions in regulation of leaf senescence and used standard criteria to describe senescence associated phenotypes for mutants. Users are welcome to submit the new SAGs.
Proper citation: Leaf Senescence Database (RRID:SCR_010227) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 26,2019. In October 2016, T1DBase has merged with its sister site ImmunoBase (https://immunobase.org). Documented on March 2020, ImmunoBase ownership has been transferred to Open Targets (https://www.opentargets.org). Results for all studies can be explored using Open Targets Genetics (https://genetics.opentargets.org). Database focused on genetics and genomics of type 1 diabetes susceptibility providing a curated and integrated set of datasets and tools, across multiple species, to support and promote research in this area. The current data scope includes annotated genomic sequences for suspected T1D susceptibility regions; genetic data; microarray data; and global datasets, generally from the literature, that are useful for genetics and systems biology studies. The site also includes software tools for analyzing the data.
Proper citation: T1DBase (RRID:SCR_007959) Copy
https://cran.r-project.org/web/packages/tdthap/index.html
Software package for TDT with extended haplotypes in the R language. R is the public domain dialect of S. It should be possible to port this library to the commercial Splus product. The main problem would be translation of the help files. (entry from Genetic Analysis Software)
Proper citation: R/TDTHAP (RRID:SCR_007625) Copy
http://fmf.igh.cnrs.fr/ISSAID/infevers
Registry for Familial Mediterranean Fever (FMF) and hereditary inflammatory disorders mutations. As of 2014, it includes twenty genes including: MEFV, MVK, TNFRSF1A, NLRP3, NOD2, PSTPIP1, LPIN2 and NLRP7, and contains over 1338 sequence variants. Confidential data, simple and complex alleles are accepted. For each gene, a menu offers: 1) a tabular list of the variants that can be sorted by several parameters; 2) a gene graph providing a schematic representation of the variants along the gene; 3) statistical analysis of the data according to the phenotype, alteration type, and location of the mutation in the gene; 4) the cDNA and gDNA sequences of each gene, showing the nucleotide changes along the sequence, with a color-based code highlighting the gene domains, the first ATG, and the termination codon; and 5) a download menu making all tables and figures available for the users, which, except for the gene graphs, are all automatically generated and updated upon submission of the variants. The entire database was curated to comply with the HUGO Gene Nomenclature Committee (HGNC) and HGVS nomenclature guidelines, and wherever necessary, an informative note was provided.
Proper citation: INFEVERS (RRID:SCR_007738) Copy
http://thomsonreuters.com/metacore/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on March 17, 2022. An integrated software suite for functional analysis of experimental data. The scope of data types includes microarray and SAGE gene expression, SNPs and CGH arrays, proteomics, metabolomics, pathway analysis, Y2H and other custom interactions. MetaCore is based on a proprietary manually curated database of human protein-protein, protein-DNA and protein compound interactions, metabolic and signaling pathways and the effects of bioactive molecules in gene expression.
Proper citation: MetaCore (RRID:SCR_008125) Copy
http://medgene.med.harvard.edu/MEDGENE/
An algorithm that generates lists of genes associated with a gene or one or more disorders. The algorithm can be used in high-throughput screening experiments, can create disease-specific micro-arrays, and can sort the results of gene profiling data. Based on the co-citations of all Medline records, MedGene can retrieve the following relationships: 1. A list of human genes associated with a particular human disease in ranking order 2. A list of human genes associated with multiple human diseases in ranking order 3. A list of human diseases associated with a particular human gene in ranking order 4. A list of human genes associated with a particular human gene in ranking order 5. The sorted gene list from other disease related high-throughput experiments, such as micro-array 6. The sorted gene list from other gene related high-throughput experiments, such as micro-array
Proper citation: MedGene (RRID:SCR_008122) Copy
http://www.nibb.ac.jp/brish/indexE.html
Database of detailed protocols for single and double in situ hybridization (ISH) method, probes used by Yamamori lab and others useful for studies of brain, and many photos of mammalian (mostly mouse and monkey) brains stained with various gene probes. Also includes a brain atlas of gene expression. Currently, the atlas comprises a series of un-annotated images showing the localization of a particular probe or molecule, e.g., AChE.
Proper citation: BraInSitu: A homepage for molecular neuroanatomy (RRID:SCR_008081) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.