Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 8 showing 141 ~ 160 out of 526 results
Snippet view Table view Download 526 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_005358

    This resource has 10+ mentions.

http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html#

A grassroots initiative dedicated to accelerating the scientific community''''s understanding of the neural basis of ADHD through the implementation of open data-sharing and discovery-based science. They believe that a community-wide effort focused on advancing functional and structural imaging examinations of the developing brain will accelerate the rate at which neuroscience can inform clinical practice. The ADHD-200 Global Competition invited participants to develop diagnostic classification tools for ADHD diagnosis based on functional and structural magnetic resonance imaging (MRI) of the brain. Applying their tools, participants provided diagnostic labels for previously unlabeled datasets. The competition assessed diagnostic accuracy of each submission and invited research papers describing novel, neuroscientific ideas related to ADHD diagnosis. Twenty-one international teams, from a mix of disciplines, including statistics, mathematics, and computer science, submitted diagnostic labels, with some trying their hand at imaging analysis and psychiatric diagnosis for the first time. The data for the competition was provided by the ADHD-200 Consortium. Consortium members from institutions around the world provided de-identified, HIPAA compliant imaging datasets from almost 800 children with and without ADHD. A phenotypic file including all of the test set subjects and their diagnostic codes can be downloaded. Winner is presented. The ADHD-200 consortium included: * Brown University, Providence, RI, USA (Brown) * The Kennedy Krieger Institute, Baltimore, MD, USA (KKI) * The Donders Institute, Nijmegen, The Netherlands (NeuroImage) * New York University Medical Center, New York, NY, USA (NYU) * Oregon Health and Science University, Portland, OR, USA (OHSU) * Peking University, Beijing, P.R.China (Peking 1-3) * The University of Pittsburgh, Pittsburgh, PA, USA (Pittsburgh) * Washington University in St. Louis, St. Louis, MO, USA (WashU)

Proper citation: ADHD-200 Sample (RRID:SCR_005358) Copy   


http://www.labman.org

On March 8, 2008 in Havana, the Latin American Network for Brain Mapping (LABMAN) was created with participants from Argentina, Brazil, Colombia, Cuba and Mexico. The focus of LABMAN is to promote neuroimaging and systems neuroscience in the region through the implementation of training and exchange programs, and to increase public awareness of the Latin American potential to contribute both to basic and applied research in human brain mapping. The immediate LABMAN goals are to: * Train specialists in all major imaging techniques. * Expedite the transfer of new scientific and technical knowledge from abroad. * Increase the scientific productivity of the region. * Drastically increase the awareness of local governments, international organizations and of the general public of brain mapping results on potential. * Organize multinational projects in areas of special relevance to the region, e.g. nutrition, pediatric development, neurodegeneration. Latin American Brain Mapping Network (LABMAN) participants : * Cuban Neuroscience Center * University of Buenos Aires * University of Sao Paulo * Universidad del Valle, Cal��, Colombia * UAM Iztapalapa, Mexico City, Mexico

Proper citation: Latin American Brain Mapping Network (LABMAN) (RRID:SCR_005509) Copy   


  • RRID:SCR_005928

http://www.livinghuman.org/

Distributed repository of anatomo-functional data and of simulation algorithms, fully integrated into a seamless simulation environment and directly accessible. This infrastructure will be used to create the physiome of the human musculo-skeletal system.

Proper citation: LHP LHDL (RRID:SCR_005928) Copy   


  • RRID:SCR_005917

    This resource has 500+ mentions.

http://www.vectorbase.org

Bioinformatics Resource Center for invertebrate vectors. Provides web-based resources to scientific community conducting basic and applied research on organisms considered potential agents of biowarfare or bioterrorism or causing emerging or re-emerging diseases.

Proper citation: VectorBase (RRID:SCR_005917) Copy   


  • RRID:SCR_006416

    This resource has 100+ mentions.

http://www.alzforum.org/

A community building portal dedicated to understanding Alzheimer's disease and related disorders, it reports on the latest scientific findings from basic research to clinical trials, creates and maintains public databases of essential research data and reagents, and produces discussion forums to promote debate, speed the dissemination of new ideas, and break down barriers across disciplines.

Proper citation: Alzheimer's Research Forum (RRID:SCR_006416) Copy   


http://www.adaa.org/

The Anxiety Disorders Association of America (ADAA) is a national nonprofit organization dedicated to the prevention, treatment, and cure of anxiety disorders and to improving the lives of all people who suffer from them. It is the leader in education, training, and research for anxiety and stress-related disorders. ADAA leads the way, improving the lives of millions of people: * Promotes professional and public awareness of anxiety and related disorders and their impact on people''s lives. * Encourages the advancement of scientific knowledge about causes and treatment of anxiety and related disorders. * Links people who need treatment with the health care professionals who provide it. * Helps people find appropriate treatment and develop self-help skills. * Works to reduce the stigma surrounding anxiety and related disorders. ADAA was founded in 1980 as the Phobia Society of America by a diverse group of clinicians and patients. The term anxiety disorder had not yet been coined. Most anxiety disorders were simply called phobias. That changed as researchers discovered links between panic attacks and abnormal blood flow in the brain, learned that anxiety disorders are associated with pervasive social and health consequences, and discovered and tested various therapies and medications to treat anxiety disorders. ADAA adopted its new name in 1990 to reflect the changing and growing field. Over the years ADAA has launched several national educational campaigns to promote awareness about anxiety disorders and encourage people to seek treatment. ADAA has also funded more than $1.5 million in anxiety disorder research. Today ADAA continues to be the voice for those affected by anxiety and anxiety-related disorders. The organization is frequently cited by the media and also provides information and treatment referrals to tens of thousands each year by phone, e-mail, and through this website.

Proper citation: Anxiety Disorders Association of America (RRID:SCR_006578) Copy   


  • RRID:SCR_006577

    This resource has 10+ mentions.

http://www.commondataelements.ninds.nih.gov

The purpose of the NINDS Common Data Elements (CDEs) Project is to standardize the collection of investigational data in order to facilitate comparison of results across studies and more effectively aggregate information into significant metadata results. The goal of the National Institute of Neurological Disorders and Stroke (NINDS) CDE Project specifically is to develop data standards for clinical research within the neurological community. Central to this Project is the creation of common definitions and data sets so that information (data) is consistently captured and recorded across studies. To harmonize data collected from clinical studies, the NINDS Office of Clinical Research is spearheading the effort to develop CDEs in neuroscience. This Web site outlines these data standards and provides accompanying tools to help investigators and research teams collect and record standardized clinical data. The Institute still encourages creativity and uniqueness by allowing investigators to independently identify and add their own critical variables. The CDEs have been identified through review of the documentation of numerous studies funded by NINDS, review of the literature and regulatory requirements, and review of other Institute''s common data efforts. Other data standards such as those of the Clinical Data Interchange Standards Consortium (CDISC), the Clinical Data Acquisition Standards Harmonization (CDASH) Initiative, ClinicalTrials.gov, the NINDS Genetics Repository, and the NIH Roadmap efforts have also been followed to ensure that the NINDS CDEs are comprehensive and as compatible as possible with those standards. CDEs now available: * General (CDEs that cross diseases) Updated Feb. 2011! * Congenital Muscular Dystrophy * Epilepsy (Updated Sept 2011) * Friedreich''s Ataxia * Parkinson''s Disease * Spinal Cord Injury * Stroke * Traumatic Brain Injury CDEs in development: * Amyotrophic Lateral Sclerosis (Public review Sept 15 through Nov 15) * Frontotemporal Dementia * Headache * Huntington''s Disease * Multiple Sclerosis * Neuromuscular Diseases ** Adult and pediatric working groups are being finalized and these groups will focus on: Duchenne Muscular Dystrophy, Facioscapulohumeral Muscular Dystrophy, Myasthenia Gravis, Myotonic Dystrophy, and Spinal Muscular Atrophy The following tools are available through this portal: * CDE Catalog - includes the universe of all CDEs. Users are able to search the full universe to isolate a subset of the CDEs (e.g., all stroke-specific CDEs, all pediatric epilepsy CDEs, etc.) and download details about those CDEs. * CRF Library - (a.k.a., Library of Case Report Form Modules and Guidelines) contains all the CRF Modules that have been created through the NINDS CDE Project as well as various guideline documents. Users are able to search the library to find CRF Modules and Guidelines of interest. * Form Builder - enables users to start the process of assembling a CRF or form by allowing them to choose the CDEs they would like to include on the form. This tool is intended to assist data managers and database developers to create data dictionaries for their study forms.

Proper citation: NINDS Common Data Elements (RRID:SCR_006577) Copy   


http://www.immuneepitope.org/

Repository contains antibody/B cell and T cell epitope information and epitope prediction and analysis tools. Immune epitopes are defined as molecular structures recognized by specific antigen receptors of the immune system, namely antibodies, B cell receptors, and T cell receptors. Immune epitopes from infectious diseases, excluding HIV, and immune-mediated diseases and the accompanying biological information are included.

Proper citation: Immune Epitope Database and Analysis Resource (IEDB) (RRID:SCR_006604) Copy   


https://www.fludb.org/brc/home.spg?decorator=influenza

The Influenza Research Database (IRD) serves as a public repository and analysis platform for flu sequence, experiment, surveillance and related data.

Proper citation: Influenza Research Database (IRD) (RRID:SCR_006641) Copy   


  • RRID:SCR_006758

http://neuroade.christakou.org/

At neuroade, a Cognitive Neuroscience Laboratory, we study change in brain and behavior across multiple time-scales. Researchers in the lab combine a variety of methodologies to answer specific questions about typical and atypical behavior and development. We use functional magnetic resonance imaging (fMRI), peripheral psychophysiology (such as skin conductance responses), behavioral testing, genotyping analysis, and computational modeling. Most of our work takes place at the Centre for Integrative Neuroscience and Neurodynamics (CINN), and we all live in the Department of Psychology at the University of Reading. Our research is divided into several distinct yet highly interlinked themes, all converging in their application to understanding psychopathology -- summarised here in no particular order: * Decision-making and the Evaluation of Decision Outcomes * Dimensions of Impulsivity as a Foraging Strategy * Adolescent Development * Computational Modeling Probes of Individual Differences

Proper citation: neuroade (RRID:SCR_006758) Copy   


  • RRID:SCR_006750

http://www.aids.gov/podcast/podcast-gallery/

Podcasts from AIDS.gov, featuring information from the Federal government about HIV/AIDS prevention, testing, research, treatment, and using new media in response to HIV/AIDS. Categories include: Basic HIV information, New Media, Federal Programs and Policies, HIV/AIDS Awareness Days, and Real Stories.

Proper citation: AIDS.gov Podcast (RRID:SCR_006750) Copy   


  • RRID:SCR_006553

    This resource has 10+ mentions.

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/

Consortium that puts sequences into a chromosome context and provides the best possible reference assembly for human, mouse, and zebrafish via FTP. Tools to facilitate the curation of genome assemblies based on the sequence overlaps of long, high quality sequences.

Proper citation: Genome Reference Consortium (RRID:SCR_006553) Copy   


  • RRID:SCR_000448

    This resource has 100+ mentions.

http://www.talairach.org/

Software automated coordinate based system to retrieve brain labels from the 1988 Talairach Atlas. Talairach Daemon database contains anatomical names for brain areas using x-y-z coordinates defined by the 1988 Talairach Atlas.

Proper citation: Talairach Daemon (RRID:SCR_000448) Copy   


http://www.pbtc.org/

The PEDIATRIC BRAIN TUMOR CONSORTIUM (PBTC) is a multidisciplinary cooperative research organization devoted to the study of correlative tumor biology and new therapies for primary CNS tumors of childhood. PBTC's mission is to contribute rapidly and effectively to the understanding and cure of these tumors through the conduct of multi-center, multidisciplinary, innovative studies with designs and analyses based on uniformly high quality statistical science. While the primary mission of the PBTC is to identify through laboratory and clinical science superior treatment strategies for children with brain cancers, the PBTC investigators recognize their profound responsibility to meet the special needs of the children and families as they face this enormous challenge. Members are committed to working within their institutions and communities to improve support services and follow up care for these patients and their families. The PBTC's primary objective is to rapidly conduct novel phase I and II clinical evaluations of new therapeutic drugs, new biological therapies, treatment delivery technologies and radiation treatment strategies in children from infancy to 21 years of age with primary central nervous system (CNS) tumors. A second objective is to characterize reliable markers and predictors (direct or surrogate) of brain tumors' responses to new therapies. The Consortium conducts research on brain tumor specimens in the laboratory to further understand the biology of pediatric brain tumors. A third objective is to develop and coordinate innovative neuro-imaging techniques. Through the PBTC's Neuro-Imaging Center, formed in May 2000, research to evaluate new treatment response criteria and neuro-imaging methods to understand regional brain effects is in progress. These imaging techniques can also advance understanding of significant neuro-toxicity in a developing child's central nervous system. The Neuro-Imaging Center is supported in part by private sources - grants from foundations and non-profit organizations - in addition to the NCI. As an NCI funded Consortium, the Pediatric Brain Tumor Consortium (PBTC) is required to make research data available to other investigators for use in research projects. An investigator who wishes to use individual patient data from one or more of the Consortium's completed and published studies must submit in writing a description of the research project, the PBTC studies from which data are requested, the specific data requested, and a list of investigators involved with the project and their affiliated research institutions. A copy of the requesting investigator's CV must also be provided. Participating Institutions: Children's Hospital of Philadelphia, Children's National Medical Center (Washington, DC), Children's Memorial Hospital (Chicago), Duke University, National Cancer Institute, St. Jude Children's Research Hospital, Texas Children's Cancer Center, University of California at San Francisco, and University of Pittsburgh.

Proper citation: Pediatric Brain Tumor Consortium (RRID:SCR_000658) Copy   


http://cvrl.ioo.ucl.ac.uk/index.htm

The Colour & Vision Research laboratory and database are based at the Institute of Ophthalmology, which is part of University College London. The Institute and CVRL are both closely associated with Moorfields Eye Hospital. The Institute is next door to Moorfields Eye Hospital near Old Street tube station (see directions). At the Colour & Vision Research laboratory, we investigate normal and clinical human visual perception. Our research focuses on questions about colour perception, light and dark adaptation, night-time vision, and the temporal and spatial properties of vision. Our primary goal is to understand the nature of the mechanisms that underlie visual perception, and to understand how those mechanism malfunction in clinical cases. More details about our research can be found by looking at the publications of members of the laboratory. The CVRL database, first set up in 1995, provides an annotated library of downloadable standard data sets relevant to colour and vision research. The focus of this site is primarily scientific and technical, but some introductory background information is also provided. A consistent set of functions for modeling colour vision based on the Stockman & Sharpe cone fundamentals and on our more recent luminous efficiency measurements are summarized under the category CVRL functions. These functions are tabulated in 0.1, 1 and 5 nm steps and can be returned as csv, xml, or tabular data or as dynamic plots. The Stockman & Sharpe cone fundamentals are the basis of a CIE proposal for physiologically-relevant colour matching functions. These functions, which are indentical to the CVRL functions, are summarized under the category CIE 2007 functions. The CIE functions are also tabulated in 0.1, 1 and 5 nm steps, and can also be returned as csv, xml, or tabular data or as dynamic plots. Significant additions to the database are the individual colour matching measurements made by Stiles & Burch. These have been compiled and cross-checked with the help of Boris Oicherman, Alexander Logvinenko, and Abhijit Sarkar from hard copies of the original data provided by Pat Trezona and Mike Webster. They can be obtained as Excel files and are available for both 2 and 10 colour matches. Other data sets, which are provided as csv files, include cone fundamentals, colour matching functions, chromaticity coordinates, prereceptoral filter density spectra, photopigment spectra, and CIE standards. Many of these data sets can also be viewed as dynamic plots. Sponsors: CVRL is funded by BBSRC The Wellcome Trust, Fight for Sight, National Eye Institute, and NIH.

Proper citation: Colour and Vision Research Laboratory (RRID:SCR_000770) Copy   


  • RRID:SCR_000807

http://www.yandell-lab.org/software/index.html

Sequenced genomes contain a treasure trove of information about how genes function and evolve. Getting at this information, however, is challenging and requires novel approaches that combine computer science and experimental molecular biology. My lab works at the intersection of both domains, and research in our group can be summarized as follows: generate hypotheses concerning gene function and evolution by computational means, and then test these hypotheses at the bench. This is easier said than done, as serious barriers still exist to using sequenced genomes and their annotations as starting points for experimental work. Some of these barriers lie in the computational domain, others in the experimental. Though challenging, overcoming these barriers offers exciting training opportunities in both computer science and molecular genetics, especially for those seeking a future at the intersection of both fields. Ongoing projects in the lab are centered on genome annotation and comparative genomics; exploring the relationships between sequence variation and human disease; and high-throughput biological image analysis. Current software tools available: VAAST (the Variant Annotation, Analysis & Search Tool) is a probabilistic search tool for identifying damaged genes and their disease-causing variants in personal genome sequences. VAAST builds upon existing amino acid substitution (AAS) and aggregative approaches to variant prioritization, combining elements of both into a single unified likelihood-framework that allows users to identify damaged genes and deleterious variants with greater accuracy, and in an easy-to-use fashion. VAAST can score both coding and non-coding variants, evaluating the cumulative impact of both types of variants simultaneously. VAAST can identify rare variants causing rare genetic diseases, and it can also use both rare and common variants to identify genes responsible for common diseases. VAAST thus has a much greater scope of use than any existing methodology. MAKER 2 (updated 01-16-2012) MAKER is a portable and easily configurable genome annotation pipeline. It's purpose is to allow smaller eukaryotic and prokaryotic genomeprojects to independently annotate their genomes and to create genome databases. MAKER identifies repeats, aligns ESTs and proteins to a genome, produces ab-initio gene predictions and automatically synthesizes these data into gene annotations having evidence-based quality values. MAKER is also easily trainable: outputs of preliminary runs can be used to automatically retrain its gene prediction algorithm, producing higher quality gene-models on seusequent runs. MAKER's inputs are minimal and its ouputs can be directly loaded into a GMOD database. They can also be viewed in the Apollo genome browser; this feature of MAKER provides an easy means to annotate, view and edit individual contigs and BACs without the overhead of a database. MAKER should prove especially useful for emerging model organism projects with minimal bioinformatics expertise and computer resources. RepeatRunner RepeatRunner is a CGL-based program that integrates RepeatMasker with BLASTX to provide a comprehensive means of identifying repetitive elements. Because RepeatMasker identifies repeats by means of similarity to a nucleotide library of known repeats, it often fails to identify highly divergent repeats and divergent portions of repeats, especially near repeat edges. To remedy this problem, RepeatRunner uses BLASTX to search a database of repeat encoded proteins (reverse transcriptases, gag, env, etc...). Because protein homologies can be detected across larger phylogenetic distances than nucleotide similarities, this BLASTX search allows RepeatRunner to identify divergent protein coding portions of retro-elements and retro-viruses not detected by RepeatMasker. RepeatRunner merges its BLASTX and RepeatMasker results to produce a single, comprehensive XML-based output. It also masks the input sequence appropriately. In practice RepeatRunner has been shown to greatly improve the efficacy of repeat identifcation. RepeatRunner can also be used in conjunction with PILER-DF - a program designed to identify novel repeats - and RepeatMasker to produce a comprehensive system for repeat identification, characterization, and masking in the newly sequenced genomes. CGL CGL is a software library designed to facilitate the use of genome annotations as substrates for computation and experimentation; we call it CGL, an acronym for Comparitive Genomics Library, and pronounce it Seagull. The purpose of CGL is to provide an informatics infrastructure for a laboratory, department, or research institute engaged in the large-scale analysis of genomes and their annotations.

Proper citation: Yandell Lab Portal (RRID:SCR_000807) Copy   


http://fantom.gsc.riken.jp/

International collaborative research project and database of annotated mammalian genome. Used to improve estimates of total number of genes and their alternative transcript isoforms in both human and mouse. Consortium to assign functional annotations to full length cDNAs that were collected during Mouse Encyclopedia Project at RIKEN.

Proper citation: Functional Annotation of the Mammalian Genome (RRID:SCR_000788) Copy   


  • RRID:SCR_006131

    This resource has 1+ mentions.

https://www.msu.edu/~brains/brains/human/index.html

A labeled three-dimensional atlas of the human brain created from MRI images. In conjunction are presented anatomically labeled stained sections that correspond to the three-dimensional MRI images. The stained sections are from a different brain than the one which was scanned for the MRI images. Also available the major anatomical features of the human hypothalamus, axial sections stained for cell bodies or for nerve fibers, at six rostro-caudal levels of the human brain stem; images and Quicktime movies. The MRI subject was a 22-year-old adult male. Differing techniques used to study the anatomy of the human brain all have their advantages and disadvantages. Magnetic resonance imaging (MRI) allows for the three-dimensional viewing of the brain and structures, precise spatial relationships and some differentiation between types of tissue, however, the image resolution is somewhat limited. Stained sections, on the other hand, offer excellent resolution and the ability to see individual nuclei (cell stain) or fiber tracts (myelin stain), however, there are often spatial distortions inherent in the staining process. The nomenclature used is from Paxinos G, and Watson C. 1998. The Rat Brain in Stereotaxic Coordinates, 4th ed. Academic Press. San Diego, CA. 256 pp

Proper citation: Human Brain Atlas (RRID:SCR_006131) Copy   


http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009

Unbiased standard magnetic resonance imaging template brain volume for normal population. These volumes were created using data from ICBM project. 6 different templates are available: * ICBM 2009a Nonlinear Symmetric - template which includes T1w,T2w,PDw modalities, also T2 relaxometry (T2 values calculated for each subject using single dual echo PD/T2 scan), and tissue probabilities maps. Also included lobe atlas used for ANIMAL+INSECT segmentation, brain mask, eye mask and face mask. Intensity inhomogeneity was performed using N3 version 1.10.1. * ICBM 2009a Nonlinear Asymmetric template - template which includes T1w,T2w,PDw modalities, and tissue probabilities maps. Intensity inhomogeneity was performed using N3 version 1.10.1. Also included brain mask, eye mask and face mask. * ICBM 2009b Nonlinear Symmetric - template which includes only T1w,T2w and PDw modalities. * ICBM 2009b Nonlinear Asymmetric - template which includes only T1w,T2w and PDw modalities. * ICBM 2009c Nonlinear Symmetric - template which includes T1w,T2w,PDw modalities, and tissue probabilities maps. Also included lobe atlas used for ANIMAL+INSECT segmentation, brain mask, eye mask and face mask. Intensity inhomogeneity was performed using N3 version 1.11. Sampling is different from 2009a template. * ICBM 2009c Nonlinear Asymmetric template - template which includes T1w,T2w,PDw modalities, and tissue probabilities maps. Intensity inhomogeneity was performed using N3 version 1.11 Also included brain mask, eye mask and face mask.Sampling is different from 2009a template. All templates are describing the same anatomy, but sampling is different. Also, different versions of N3 algorithm produces slightly different tissue probability maps. Tools for using these atlases can be found in the Software section. Viewing the multiple atlas volumes online requires Java browser support. You may also download the templates - see licensing information.

Proper citation: ICBM 152 Nonlinear atlases version 2009 (RRID:SCR_008796) Copy   


http://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj1

An unbiased standard magnetic resonance imaging template brain volume for pediatric data from the 4.5 to 18.5y age range. These volumes were created using data from 324 children enrolled in the NIH-funded MRI study of normal brain development (Almli et al., 2007, Evans and Group 2006). Tools for using these atlases can be found in the Software section. To view the atlases online, click on the appropriate JIV2 link in the Download section. You can download templates constructed for different age ranges. For each age range you will get an average T1w, T2w, PDw maps normalized between 0 and 100 and tissue probability maps, with values between 0 and 1. Also each age range includes a binary brain mask.

Proper citation: NIHPD Objective 1 atlases (4.5 - 18.5y) (RRID:SCR_008794) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X