Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
A modular and extensible web-based data management system that integrates all aspects of a multi-center study, from heterogeneous data acquisition to storage, processing and ultimately dissemination, within a streamlined platform. Through a standard web browser, users are able to perform a wide variety of tasks, such as data entry, 3D image visualization and data querying. LORIS also stores data independently from any image processing pipeline, such that data can be processed by external image analysis software tools. LORIS provides a secure web-based and database-driven infrastructure to automate the flow of clinical data for complex multi-site neuroimaging trials and studies providing researchers with the ability to easily store, link, and access significant quantities of both scalar (clinical, psychological, genomic) and multi-dimensional (imaging) data. LORIS can collect behavioral, neurological, and imaging data, including anatomical and functional 3D/4D MRI models, atlases and maps. LORIS also functions as a project monitoring and auditing platform to oversee data acquisition across multiple study sites. Confidentiality during multi-site data sharing is provided by the Subject Profile Management System, which can perform automatic removal of confidential personal information and multiple real-time quality control checks. Additionally, web interactions with the LORIS portal take place over an encrypted channel via SSL, ensuring data security. Additional features such as Double Data Entry and Statistics and Data Query GUI are included.
Proper citation: LORIS - Longitudinal Online Research and Imaging System (RRID:SCR_000590) Copy
http://www.nitrc.org/projects/atp
Autism research program that makes available post-mortem brain tissue to qualified scientists all over the world. Working directly with tissue banks, organ procurement agencies, medical examiners and the general public, this is the largest program dedicated to increasing and enhancing the availability of post-mortem brain tissue for basic research in autism. To date, the ATP has collected and stored more than 170 brains in their repositories at Harvard (US) and Oxford (UK). These brains are processed by formalin fixation and/or snap frozen to properly provide high quality tissue of all brain regions, in support of biological research in autism. The ATP is unique in that they diligently pursue all available clinical data (pre and post mortem) on tissue donors in order to create the most biologically relevant brain repository for autism research. These data, together with tissue resources from both banks and associated repositories, are presented to all interested researchers through their extensive web-based data portal (login required). The ATP is not a brain bank, but works directly with the Harvard Brain Tissue Resource Center in Boston (HBTRC), Massachusetts to serve as its tissue repository. This program augments brain bank functions by: * Creating the most biologically relevant brain tissue repository possible * Fully covering all costs associated with brain extraction and transfer to the repositories at Harvard (US and Canada) and Oxford (UK). * Providing scientific oversight of tissue distributions * Overseeing and managing all tissue grants * Clinically phenotyping and acquiring extensive medical data on all of their donors * Providing continuing family support and communication to all of their donors * Directly supporting researchers to facilitate autism research * Maintaining a robust web based data management and secure on-line global interface system * Developing and supporting ATP established scientific initiatives * Actively providing public outreach and education The ATP is not a clinical organ procurement agency, but rather they facilitate the wishes of donors and families to donate their tissue to autism research. Through the ATP's established international infrastructure, they work with any accredited tissue bank, organ procurement agency, or medical examiner that receives a family's request to donate their loved one's tissue to the program. Once contacted, the ATP will insure that the family's request to donate their loved one's tissue is faithfully met, covering all costs to the family and partnering agency as well as ensuring the tissues' proper and rapid transport to the ATP's repository at the Harvard Brain Tissue Resource Center (HBTRC) in Boston, Massachusetts.
Proper citation: Autism Tissue Program (RRID:SCR_000651) Copy
A configurable, open-source, Nipype-based, automated processing pipeline for resting state functional MRI (R-fMRI) data, for use by both novice and expert users. C-PAC was designed to bring the power, flexibility and elegance of the Nipype platform to users in a plug and play fashion?without requiring the ability to program. Using an easy to read, text-editable configuration file, C-PAC can rapidly orchestrate automated R-fMRI processing procedures, including: - quality assurance measurements - image preprocessing based upon user specified preferences - generation of functional connectivity maps (e.g., correlation analyses) - customizable extraction of time-series data - generation of local R-fMRI metrics (e.g., regional homogeneity, voxel-matched homotopic connectivity, fALFF/ALFF) C-PAC makes it possible to use a single configuration file to launch a factorial number of pipelines differing with respect to specific processing steps.
Proper citation: C-PAC (RRID:SCR_000862) Copy
http://www.nitrc.org/projects/cbinifti/
An I/O library for Matlab/Octave Matlab and Octave library for reading and writing Nifti-1 files. cbiNifti is intended to be a small, self-contained library that makes minimal assumptions about what Nifti files should look like and allow users easy access to the raw data. cbiNifti handles compressed file formats for reading and writing, using Unix pipes for compression and decompression. More information and code examples at: http://www.pc.rhul.ac.uk/staff/J.Larsson/software.html
Proper citation: cbiNifti: Matlab/Octave Nifti library (RRID:SCR_000860) Copy
http://www.nitrc.org/projects/cabn/
Construct and analyse brain network is a brain network visualization tool, which can help researchers to visualize construct and analyse resting state functional brain networks from different levels in a quick, easy and flexible way. Entrance parameter of construct and analyse brain network is export parameters of dparsf software.It would be greatly appreciated if you have any suggestions about the package or manual.
Proper citation: BrainNetworkConstructionAnalysisPlatform (RRID:SCR_000854) Copy
http://www.nitrc.org/projects/philips_users/
Communnity project to help support the efforts of investigators using Philips Healthcare systems. This clearingsite helps users find forums, mailinglists, etc. that support this community. If you have suggestions for inclusion, let the project admin know!
Proper citation: Philips Users Community (RRID:SCR_001438) Copy
http://incf.org/programs/atlasing/projects/waxholm-space
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 1st, 2023. Coordinate based reference space for the mapping and registration of neuroanatomical data. Users can download image volumes representing the canonical Waxholm Space (WHS) adult C57BL/6J mouse brain, which include T1-, T2*-, and T2-Weighted MR volumes (generated at the Duke Center for In-Vivo Microscopy), Nissl-stained optical histology (acquired at Drexel University), and a volume of labels. All volumes are represented at 21.5μ isotropic resolution. Datasets are provided as gzipped NIFTI files.
Proper citation: Waxholm Space (RRID:SCR_001592) Copy
http://neuro.imm.dtu.dk/wiki/Main_Page
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 10, 2025. Semantic wiki with structured information, primarily from functional and molecular neuroimaging papers, but there are also other types of papers, e.g., from personality genetics. It lists results from neuroimaging studies, such as Talairach coordinates and brain volume measurements, as well as software packages and brain regions. SQL dumps of the structured information in the wiki is available so complex queries can be formed. The Brede Wiki templates store the structured information from neuroscience papers and editors may add free format text. Template definitions format the data so it is presented as tables on the formatted wiki-page. From a given PMID a web-service can format information from PubMed for inclusion in the Brede Wiki. A Matlab script can extract coordinates from SPM5 and format them in the Talairach coordinate template format.
Proper citation: Brede Wiki (RRID:SCR_001411) Copy
An image processing program running under Windows suitable for such tasks as tensor calculation, color mapping, fiber tracking, and 3D visualization. Most of operations can be done with only a few clicks. This tool evolved from DTI Studio. Tools in the program can be grouped in the following way: * Image Viewer * Diffusion Tensor Calculations * Fiber Tracking and Editing * 3D Visualization * Image File Management * Region of Interesting (ROI) Drawing and Statistics * Image Registration
Proper citation: MRI Studio (RRID:SCR_001398) Copy
http://www.nesys.uio.no/Atlas3D/
A multi-platform visualization tool which allows import and visualization of 3-D atlas structures in combination with tomographic and histological image data. The tool allows visualization and analysis of the reconstructed atlas framework, surface modeling and rotation of selected structures, user-defined slicing at any chosen angle, and import of data produced by the user for merging with the atlas framework. Tomographic image data in NIfTI (Neuroimaging Informatics Technology Initiative) file format, VRML and PNG files can be imported and visualized within the atlas framework. XYZ coordinate lists are also supported. Atlases that are available with the tool include mouse brain structures (3-D reconstructed from The Mouse Brain in Stereotaxic Coordinates by Paxinos and Franklin (2001)) and rat brain structures (3-D reconstructed from The Rat Brain in Stereotaxic Coordinates by Paxinos and Watson (2005)). Experimental data can be imported in Atlas3D and warped to atlas space, using manual linear registration, with the possibility to scale, rotate, and position the imported data. This facilitates assignment of location and comparative analysis of signal location in tomographic images.
Proper citation: Atlas3D (RRID:SCR_001808) Copy
Issue
http://www.nitrc.org/projects/plink
Open source whole genome association analysis toolset, designed to perform range of basic, large scale analyses in computationally efficient manner. Used for analysis of genotype/phenotype data. Through integration with gPLINK and Haploview, there is some support for subsequent visualization, annotation and storage of results. PLINK 1.9 is improved and second generation of the software.
Proper citation: PLINK (RRID:SCR_001757) Copy
https://www.nitrc.org/projects/nidag
An international working group dedicated to improving access to neuroimaging results in a free and open-access manner. It seeks to establish a universal coordinate database, including both past papers and future studies. Their current project involves the creation of a comprehensive database of neuroimaging results searchable based on standardized coordinates. Once complete, this will allow anyone to find all of the articles that report a coordinate, or set of coordinates, easily and without cost. Eventually, they hope to expand this database to include not only coordinates, but statistical parametric maps as well. Formation of such a database will increase the likelihood of relevant papers being found and cited, and also be a very useful tool for those interested in meta-analysis, and hopefully clarify structure-function relationships. They are interested in hearing from people who might be willing to contribute to their projects, particularly those with programming experience. The number of published neuroimaging studies is increasing rapidly and it is not feasible to read them all. If a computer database could store key information from published fMRI papers and make that information easier to search or share, this would have substantial benefits for the neuroimaging community. Projects like AMAT, Brainmap, Brede and SumsDB have started to tackle this problem. NIDAG wants to formalize and improve these databases so that they meet the needs of the neuroimaging community. Formal meta-analysis of published data is a valuable way to assess the consistency and reliability of experimental results. A database of neuroimaging results would facilitate meta-analyses, in conjunction with tools like GingerALE and Multi-level Kernel Density Analysis.
Proper citation: NIDAG: Neuroimaging Data Access Group (RRID:SCR_001674) Copy
http://www.nitrc.org/projects/mica/
Software toolbox based on FSL command line tools that performs masked independent component analysis and related analyses in an integrated way within a spatially restricted subregion of the brain. Used for investigating functional connectivity in functional magnetic resonance imaging data in the field of neuroimaging.
Proper citation: masked ICA (mICA) Toolbox (RRID:SCR_016349) Copy
http://www.nitrc.org/projects/uf2c/
Software tool to standardize and facilitate connectivity studies through a graphical user interface and validated preset parameters.
Proper citation: User Friendly Functional Connectivity - UF²C (RRID:SCR_016550) Copy
Community site to make brain imaging research easier that aims to build software that is clearly written, clearly explained, a good fit for the underlying ideas, and a natural home for collaboration.
Proper citation: Neuroimaging in Python (RRID:SCR_013141) Copy
http://sourceforge.net/projects/meanmachine/
This software can be used to analyze EEG data either using a graphical interface (GUI) or using Matlab scripts, which make use of the functions provided by the MeanMachine. As compared to other libraries, MeanMachine can handle even very large data sets like, for example, 256 channels recorded at 2KHz.
Proper citation: Mean Machine (RRID:SCR_013103) Copy
http://sourceforge.net/projects/liversegm/
A set of tools for the processing of liver images. These tools consist of a level set based variational approach that incorporates shape priors and appearance models. It uses ITK-SNAP 1.4 as interface. The tools are capable of automatic liver segmentation and semi-automatic injury segmentation.
Proper citation: LiverSegm (RRID:SCR_013108) Copy
http://www.nitrc.org/projects/iterdrwsp/
Software which aims to better estimate the neuronal activation of an individual using the results of an independent component analysis (ICA) method applied to a temporally concatenated group of functional magnetic resonance imaging (fMRI) data (i.e., Tc-GICA method). This approach employs iterative LS solutions to refine both the individual SPs and TCs with an additional a priori assumption of sparseness in the SPs (i.e., minimally overlapping SPs) based on L(1)-norm minimization.
Proper citation: Iterative dual-regression with sparse prior (RRID:SCR_014128) Copy
http://www.nitrc.org/projects/l-neuron
A program which creates anatomically realistic virtual neurons using the formalism of the Lyndenmayer systems to implement sets of neuroanatomical rules discovered by several research groups. The program algorithms read in experimental data - in the form of statistical distributions - to generate virtual structures. L-Neuron samples the values of the parameters within these statistical distributions in a stochastic (random) fashion during dendritic growth.
Proper citation: L-Neuron (RRID:SCR_014132) Copy
http://www.nitrc.org/projects/lwdp/
A lightweight framework for setting up dependency-driven processing pipelines. The tool is essentially a configurable shell script (sh/bash), which can be included in other scripts and primarily provides a small number of utility functions for dependency checking and NFS-safe file locking for cluster processing.
Proper citation: Lightweight Data Pipeline (RRID:SCR_014135) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.