Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 7 showing 121 ~ 140 out of 776 results
Snippet view Table view Download 776 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_013401

    This resource has 50+ mentions.

http://www.treefam.org

A database of phylogenetic trees of animal genes. It aims at developing a curated resource that gives reliable information about ortholog and paralog assignments, and evolutionary history of various gene families. TreeFam defines a gene family as a group of genes that evolved after the speciation of single-metazoan animals. It also tries to include outgroup genes like yeast (S. cerevisiae and S. pombe) and plant (A. thaliana) to reveal these distant members.TreeFam is also an ortholog database. Unlike other pairwise alignment based ones, TreeFam infers orthologs by means of gene trees. It fits a gene tree into the universal species tree and finds historical duplications, speciations and losses events. TreeFam uses this information to evaluate tree building, guide manual curation, and infer complex ortholog and paralog relations.The basic elements of TreeFam are gene families that can be divided into two parts: TreeFam-A and TreeFam-B families. TreeFam-B families are automatically created. They might contain errors given complex phylogenies. TreeFam-A families are manually curated from TreeFam-B ones. Family names and node names are assigned at the same time. The ultimate goal of TreeFam is to present a curated resource for all the families. phylogenetic tree, animal, vertebrate, invertebrate, gene, ortholog, paralog, evolutionary history, gene families, single-metazoan animals, outgroup genes like yeast (S. cerevisiae and S. pombe), plant (A. thaliana), historical duplications, speciations, losses, Human, Genome, comparative genomics

Proper citation: Tree families database (RRID:SCR_013401) Copy   


  • RRID:SCR_013014

    This resource has 10+ mentions.

http://www.fugu-sg.org/

THIS RESOURCE IS NO LONGER IN SERVICE,documented on August 16, 2019. Fugu genome is among the smallest vertebrate genomes and has proved to be a valuable reference genome for identifying genes and other functional elements such as regulatory elements in the human and other vertebrate genomes, and for understanding the structure and evolution of vertebrate genomes. This site presents version 4 of the Fugu genome, released in October 2004 by the International Fugu Genome Consortium. Fugu rubripes has a very compact genome, with less than 15 consisting of dispersed repetitive sequence, which makes it ideal for gene discovery. A draft sequence of the fugu genome was determined by the International Fugu Genome Consortium in 2002 using the ''whole-genome shotgun'' sequencing strategy. Fugu is the second vertebrate genome to be sequenced, the first being the human genome. This webpage presents the annotation made on the fourth assembly by the IMCB team using the Ensembl annotation pipeline. We are continuing with the gap filling work and linking of the scaffolds to obtain super-contigs.

Proper citation: Fugu Genome Project (RRID:SCR_013014) Copy   


  • RRID:SCR_013222

    This resource has 10+ mentions.

http://dorina.mdc-berlin.de/rbp_browser/dorina.html

In animals, RNA binding proteins (RBPs) and microRNAs (miRNAs) post-transcriptionally regulate the expression of virtually all genes by binding to RNA. Recent advances in experimental and computational methods facilitate transcriptome-wide mapping of these interactions. It is thought that the combinatorial action of RBPs and miRNAs on target mRNAs form a post-transcriptional regulatory code. We provide a database that supports the quest for deciphering this regulatory code. Within doRiNA, we are systematically curating, storing and integrating binding site data for RBPs and miRNAs. Users are free to take a target (mRNA) or regulator (RBP and/or miRNA) centric view on the data. We have implemented a database framework with short query response times for complex searches (e.g. asking for all targets of a particular combination of regulators). All search results can be browsed, inspected and analyzed in conjunction with a huge selection of other genome-wide data, because our database is directly linked to a local copy of the UCSC genome browser. At the time of writing, doRiNA encompasses RBP data for the human, mouse and worm genomes. For computational miRNA target site predictions, we provide an update of PicTar predictions.

Proper citation: doRiNA (RRID:SCR_013222) Copy   


http://mips.gsf.de/genre/proj/ustilago/

The MIPS Ustilago maydis Genome Database aims to present information on the molecular structure and functional network of the entirely sequenced, filamentous fungus Ustilago maydis. The underlying sequence is the initial release of the high quality draft sequence of the Broad Institute. The goal of the MIPS database is to provide a comprehensive genome database in the Genome Research Environment in parallel with other fungal genomes to enable in depth fungal comparative analysis. The specific aims are to: 1. Generate and assemble Whole Genome Shotgun sequence reads yielding 10X coverage of the U. maydis genome 2. Integrate the genomic sequence assembly with physical maps generated by Bayer CropScience 3. Perform automated annotation of the sequence assembly 4. Align the strain 521 assembly with the FB1 assembly provided by Exelixis 5. Release the sequence assembly and results of our annotation and analysis to public Ustilago maydis is a basidiomycete fungal pathogen of maize and teosinte. The genome size is approximately 20 Mb. The fungus induces tumors on host plants and forms masses of diploid teliospores. These spores germinate and form haploid meiotic products that can be propagated in culture as yeast-like cells. Haploid strains of opposite mating type fuse and form a filamentous, dikaryotic cell type that invades plant tissue to reinitiate infection. Ustilago maydis is an important model system for studying pathogen-host interactions and has been studied for more than 100 years by plant pathologists. Molecular genetic research with U. maydis focuses on recombination, the role of mating in pathogenesis, and signaling pathways that influence virulence. Recently, the fungus has emerged as an excellent experimental model for the molecular genetic analysis of phytopathogenesis, particularly in the characterization of infection-specific morphogenesis in response to signals from host plants. Ustilago maydis also serves as an important model for other basidiomycete plant pathogens that are more difficult to work with in the laboratory, such as the rust and bunt fungi. Genomic sequence of U. maydis will also be valuable for comparative analysis of other fungal genomes, especially with respect to understanding the host range of fungal phytopathogens. The analysis of U. maydis would provide a framework for studying the hundreds of other Ustilago species that attack important crops, such as barley, wheat, sorghum, and sugarcane. Comparisons would also be possible with other basidiomycete fungi, such as the important human pathogen C. neoformans. Commercially, U. maydis is an excellent model for the discovery of antifungal drugs. In addition, maize tumors caused by U. maydis are prized in Hispanic cuisine and there is interest in improving commercial production. The complete putative gene set of the Broad Institute''s second release is loaded into the database and in addition all deviating putative genes from a putative gene set produced by MIPS with different gene prediction parameters are also loaded. The complete dataset will then be analysed, gene predictions will be manually corrected due to combined information derived from different gene prediction algorithms and, more important, protein and EST comparisons. Gene prediction will be restricted to ORFs larger than 50 codons; smaller ORFs will be included only if similarities to other proteins or EST matches confirm their existence or if a coding region was postulated by all prediction programs used. The resulting proteins will be annotated. They will be classified according to the MIPS classification catalogue receiving appropriate descriptions. All proteins with a known, characterized homolog will be automatically assigned to functional categories using the MIPS functional catalog. All extracted proteins are in addition automatically analysed and annotated by the PEDANT suite.

Proper citation: MIPS Ustilago maydis Database (RRID:SCR_007563) Copy   


  • RRID:SCR_007074

    This resource has 50+ mentions.

http://prodoric.tu-bs.de/

Database about gene regulation and gene expression in prokaryotes. It includes a manually curated and unique collection of transcription factor binding sites. A variety of bioinformatics tools for the prediction, analysis and visualization of regulons and gene reglulatory networks is included. The integrated approach provides information about molecular networks in prokaryotes with focus on pathogenic organisms. In detail this concerns: * transcriptional regulation (transcription factors and their DNA binding sites * signal transduction (two-component systems, phosphylation cascades) * protein interactions (complex formation, oligomerization) * biochemical pathways (chemical reactions) * other regulation events (e.g. codon usage, etc. ...) It aims to be a resource to model protein-host interactions and to be a suitable platform to analyze high-throughput data from proteomis and transcriptomics experiments (systems biology). Currently it mainly contains detailed information about operon and promoter structures including huge collections of transcription factor binding sites. If an appropriate number of regulatory binding sites is available, a position weight matrix (PWM) and a sequence logo is provided, which can be used to predict new binding sites. This data is collected manually by screening the original scientific literature. PRODORIC also handles protein-protein interactions and signal-transduction cascades that commonly occur in form of two-component systems in prokaryotes. Furthermore it contains metabolic network data imported from the KEGG database., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: PRODORIC (RRID:SCR_007074) Copy   


  • RRID:SCR_007139

    This resource has 1000+ mentions.

http://www.ncbi.nlm.nih.gov/COG

A database for phylogenetic classification for proteins encoded in complete genomes. Clusters of Orthologous Groups of proteins (COGs) were delineated by comparing protein sequences encoded in complete genomes, representing major phylogenetic lineages. Each COG consists of individual proteins or groups of paralogs from at least 3 lineages and thus corresponds to an ancient conserved domain. Please be aware that COGs hasn't been updated in many years and will not be.

Proper citation: COG (RRID:SCR_007139) Copy   


  • RRID:SCR_007606

    This resource has 100+ mentions.

http://genolist.pasteur.fr/Colibri/

Database dedicated to the analysis of the genome of Escherichia coli. Its purpose is to collate and integrate various aspects of the genomic information from E. coli, the paradigm of Gram-negative bacteria. Colibri provides a complete dataset of DNA and protein sequences derived from the paradigm strain E. coli K-12, linked to the relevant annotations and functional assignments. It allows one to easily browse through these data and retrieve information, using various criteria (gene names, location, keywords, etc.). The data contained in Colibri originates from two major sources of information, the reference genomic DNA sequence from the E. coli Genome Project and the feature annotations from the EcoGene data collection., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Colibri (RRID:SCR_007606) Copy   


  • RRID:SCR_007689

    This resource has 1+ mentions.

http://germsage.nichd.nih.gov

Collection of male germ cell transcriptiome information derived from Serial Analysis of Gene Expression (SAGE). It includes the three key germ cell stages in spermatogenesis, including mouse type A spermatogonia (Spga), pachytene spermatocytes (Spcy), and round spermatids (Sptd). A total of 452,095 SAGE tags are represented in all the libraries and is by far the most comprehensive resource available. Users can choose a global view of germ cell transcriptome data in the UCSC Genome browser. They can also search genes or specify searching criteria based on tag sequence, chromosomal location or tag counts.

Proper citation: GermSAGE (RRID:SCR_007689) Copy   


  • RRID:SCR_007793

    This resource has 50+ mentions.

http://mirgator.kobic.re.kr/

Database of compiled, public, deep sequencing miRNA data and several novel tools to facilitate exploration of massive data. The miR-seq browser supports users to examine short read alignment with the secondary structure and read count information available in concurrent windows. Features such as sequence editing, sorting, ordering, import and export of user data are of great utility for studying iso-miRs, miRNA editing and modifications. miRNA����??target relation is essential for understanding miRNA function. Coexpression analysis of miRNA and target mRNAs, based on miRNA-seq and RNA-seq data from the same sample, is visualized in the heat-map and network views where users can investigate the inverse correlation of gene expression and target relations, compiled from various databases of predicted and validated targets.

Proper citation: miRGator (RRID:SCR_007793) Copy   


http://projects.tcag.ca/humandup/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. It contains information about segmental duplications in the human genome. The criteria used to identify regions of segmental duplication are: Sequence identity of at least 90, Sequence length of at least 5 kb, Not be entirely composed of repetitive elements. Background Previous studies have suggested that recent segmental duplications, which are often involved in chromosome rearrangements underlying genomic disease, account for some 5 of the human genome. We have developed rapid computational heuristics based on BLAST analysis to detect segmental duplications, as well as regions containing potential sequence misassignments in the human genome assemblies. Results Our analysis of the June 2002 public human genome assembly revealed that 107.4 of 3,043.1 megabases (Mb) (3.53) of sequence contained segmental duplications, each with size equal or more than 5 kb and 90 identity. We have also detected that 38.9 Mb (1.28) of sequence within this assembly is likely to be involved in sequence misassignment errors. Furthermore, we have identified a significant subset (199,965 of 2,327,473 or 8.6) of single-nucleotide polymorphisms (SNPs) in the public databases that are not true SNPs but are potential paralogous sequence variants. Conclusion Using two distinct computational approaches, we have identified most of the sequences in the human genome that have undergone recent segmental duplications. Near-identical segmental duplications present a major challenge to the completion of the human genome sequence. Potential sequence misassignments detected in this study would require additional efforts to resolve. The segmental duplication data and summary statistics are available for download. Data for Human Genome (based on the May 2004 Human Genome Assembly (hg17)) Visualize duplication relationships in GBrowse (GBrowse) Duplicon Pair relationships (GFF) Genes within duplication regions (HTML) Genome duplication content (MS Excel) The segmental duplication data can be visualized in a genome browser in the GBrowse section. Selected human genome annotation tracks (except the segmental duplication track) have also been obtained from UCSC and loaded into the genome browser. Detailed information (e.g. overlapping genes, overlapping clones, detailed alignment) can be obtained by clicking on a duplication cluster in GBrowse. Both keyword search and BLAT search are available. Analyses based on previous human genome assemblies can be found in the Previous Analyses section. Acknowledgments We thank The Centre for Applied Genomics at the Hospital for Sick Children (HSC) as well as collaborators worldwide. Supported by Genome Canada the Howard Hughes Medical Institute International Scholar Program (to S.W.S.) and the HSC Foundation.

Proper citation: Human Genome Segmental Duplication Database (RRID:SCR_007728) Copy   


  • RRID:SCR_007927

    This resource has 10+ mentions.

http://mips.gsf.de/simap/

It provides a database based on a pre-computed similarity matrix covering the similarity space formed by >4 million amino acid sequences from public databases and completely sequenced genomes. The database is capable of handling very large datasets and is updated incrementally. For sequence similarity searches and pairwise alignments, we implemented a grid-enabled software system, which is based on FASTA heuristics and the Smith Waterman algorithm. SimpleSIMAP and AdvancedSIMAP retrieve homologs for given protein sequences that need to be contained in the SIMAP database. While SimpleSIMAP provides only selected parameters and preconfigured search spaces, the AdvancedSIMAP allows the user to specify search space, filtering and sorting parameters in a flexible manner. Both types of queries result in lists of homologs that are linked in turn to their homologs. So the web interfaces allow users to explore quickly and interactively the protein world by homology. Sponsors: SIMAP is supported by the Department of Genome Oriented Bioinformatics of the Technische Universitt Mnchen and the Institute for Bioinformatics of the GSF-National Research Center for Environment and Health.

Proper citation: SIMAP (RRID:SCR_007927) Copy   


  • RRID:SCR_007955

    This resource has 1+ mentions.

http://systers.molgen.mpg.de/

SYSTERS is a database of protein sequences grouped into homologous families and superfamilies. The SYSTERS project aims to provide a meaningful partitioning of the whole protein sequence space by a fully automatic procedure. A refined two-step algorithm assigns each protein to a family and a superfamily. The sequence data underlying SYSTERS release 4 now comprise several protein sequence databases derived from completely sequenced genomes (ENSEMBL, TAIR, SGD and GeneDB), in addition to the comprehensive Swiss-Prot/TrEMBL databases. To augment the automatically derived results, information from external databases like Pfam and Gene Ontology are added to the web server. Furthermore, users can retrieve pre-processed analyses of families like multiple alignments and phylogenetic trees. New query options comprise a batch retrieval tool for functional inference about families based on automatic keyword extraction from sequence annotations. A new access point, PhyloMatrix, allows the retrieval of phylogenetic profiles of SYSTERS families across organisms with completely sequenced genomes. Gene, Human, Vertebrate, Genome, Human ORFs

Proper citation: SYSTERS (RRID:SCR_007955) Copy   


  • RRID:SCR_007952

    This resource has 100+ mentions.

http://supfam.org/SUPERFAMILY/

SUPERFAMILY is a database of structural and functional protein annotations for all completely sequenced organisms. The SUPERFAMILY annotation is based on a collection of hidden Markov models, which represent structural protein domains at the SCOP superfamily level. A superfamily groups together domains which have an evolutionary relationship. The annotation is produced by scanning protein sequences from over 1,700 completely sequenced genomes against the hidden Markov models.

Proper citation: SUPERFAMILY (RRID:SCR_007952) Copy   


  • RRID:SCR_008147

    This resource has 1+ mentions.

http://www.thearkdb.org/arkdb/

This website contains the mapping sequence of poultry. The ArkDB database system aims to provide a comprehensive public repository for genome mapping data from farmed and other animal species. In doing so, it aims to provide a route in to genomic and other sequence from the initial viewpoint of linkage mapping, RH mapping, physical mapping or - possibly more importantly - QTL mapping data. It's supported, in part, by the USDA-CSREES National Animal Genome Research Program in order to serve the poultry genome mapping community. This system represents a complete rewrite of the original version with the code migrated to java and the underlying database targeted at postgres (although any standards-compliant database engine should suffice). The initial release records details of maps and the markers that they contain. There are alternative entry points that target either a chromosome or a specific mapping analysis as the starting point. Limited relationships between markers are recorded and displayed. As with the previous version, all maps are drawn using data extracted from the database on the fly.

Proper citation: ChickBase (RRID:SCR_008147) Copy   


  • RRID:SCR_008140

    This resource has 1+ mentions.

http://microbialgenomics.energy.gov/index.shtml

Through its Microbial Genome Program (MGP) and its Genomics:GTL (GTL) program, DOEs Office of Biological and Environmental Research (BER) has sequenced more than 485 microbial genomes and 30 microbial communities having specialized biological capabilities. Identifying these genes will help investigators discern how gene activities in whole living systems are orchestrated to solve myriad life challenges. The MGP was begun in 1994 as a spinoff from the Human Genome Program. The goal of the program was to sequence the genomes of a number of nonpathogenic microbes that would be useful in solving DOE''s mission challenges in environmental-waste cleanup, energy production, carbon cycling, and biotechnology. Past projects include microbial genome program, microbial cell project, and the Laboratory Science Program at the DOE Joint Genome Institute. The two ongoing projects are Genomics: GTL program and Community Sequencing Program at the DOE Joint Genome Institute. Sponsors: Site sponsored by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Microbial Genomics Program (RRID:SCR_008140) Copy   


http://mips.helmholtz-muenchen.de/genre/proj/mpcdb/

A database of manually annotated mammalian protein complexes. To obtain a high-quality dataset, information was extracted from individual experiments described in the scientific literature. Data from high-throughput experiments was not included.

Proper citation: Mammalian Protein Complex Data Base (RRID:SCR_008209) Copy   


http://www.sanger.ac.uk/Projects/C_elegans/index.shtml

The Sanger Institute and the Genome Sequencing Center at the Washington University School of Medicine, St. Louis have collaborated to sequence the genomes of both C. elegans and C. briggsae. The completed C. elegans genome sequence is represented by over 3,000 individual clone sequences which can be accessed through this site (or through WormBase). These sequences are submitted to EMBL whenever the sequence or annotation changes (e.g. modification to gene structures) and these submissions are then mirrored to GenBank and DDBJ. These sequences (along with ESTs and proteins) can be searched on our C. elegans BLAST server. WormBase is the repository of mapping, sequencing and phenotypic information for C. elegans. The worm informatics group at the Sanger Institute play a key role in assembling the whole database. They also curate and develop some of the constituent databases that comprise WormBase.

Proper citation: Caenorhabditis Genome Sequencing Projects (RRID:SCR_008155) Copy   


http://dimer.tamu.edu/doodle/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 15, 2013. Doodle is a database that was developed to store and distribute information about the protein oligomerization domains that are encoded by various genomes. The protein oligomerization domains described here were found using the lambda repressor fusion system. Doodle uses a schema that is based on EnsEMBL, while also utilizing bioperl modules to both store and retrieve data. The frontend was developed entirely in perl, while the backend utilizes MySQL. GMOD was used to develop the genomic view.

Proper citation: Database of oligomerization domains from lambda experiments (RRID:SCR_008107) Copy   


  • RRID:SCR_008179

http://chromium.lovd.nl/LOVD2/home.php?select_db=CDKN2A

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. The CDKN2A Database presents the germline and somatic variants of the CDKN2A tumor suppressor gene recorded in human disease through June 2003, annotated with evolutionary, structural, and functional information, in a format that allows the user to either download it or manipulate it for their purposes online. The goal is to provide a database that can be used as a resource by researchers and geneticists and that aids in the interpretation of CDKN2A missense variants. Most online mutation databases present flat files that cannot be manipulated, are often incomplete, and have varying degrees of annotation that may or may not help to interpret the data. They hope to use CDKN2A as a prototype for integrating computational and laboratory data to help interpret variants in other cancer-related genes and other single nucleotide polymorphisms (SNPs) found throughout the genome. Another goal of the lab is to interpret the functional and disease significance of missense variants in cancer susceptibility genes. Eventually, these results will be relevant to the interpretation of single nucleotide polymorphisms (SNPs) in general. The CDKN2A locus is a valuable model for assessing relationships among variation, structure, function, and disease because: Variants of this gene are associated with hereditary cancer: Familial Melanoma (and related syndromes); somatic alterations play a role in carcinogenesis; allelic variants occur whose functional consequences are unknown; reliable functional assays exist; and crystal structure is known. All variants in the database are recorded according to the nomenclature guidelines as outlined by the Human Genome Variation Society. This database is currently designed for research purposes only and is not yet recommended as a clinical resource. Many of the mutations reported here have not been tested for disease association and may represent normal, non-disease causing polymorphisms.

Proper citation: CDKN2A Database (RRID:SCR_008179) Copy   


http://dictybase.org/

Model organism database for the social amoeba Dictyostelium discoideum that provides the biomedical research community with integrated, high quality data and tools for Dictyostelium discoideum and related species. dictyBase houses the complete genome sequence, ESTs, and the entire body of literature relevant to Dictyostelium. This information is curated to provide accurate gene models and functional annotations, with the goal of fully annotating the genome to provide a ''''reference genome'''' in the Amoebozoa clade. They highlight several new features in the present update: (i) new annotations; (ii) improved interface with web 2.0 functionality; (iii) the initial steps towards a genome portal for the Amoebozoa; (iv) ortholog display; and (v) the complete integration of the Dicty Stock Center with dictyBase. The Dicty Stock Center currently holds over 1500 strains targeting over 930 different genes. There are over 100 different distinct amoebozoan species. In addition, the collection contains nearly 600 plasmids and other materials such as antibodies and cDNA libraries. The strain collection includes: * strain catalog * natural isolates * MNNG chemical mutants * tester strains for parasexual genetics * auxotroph strains * null mutants * GFP-labeled strains for cell biology * plasmid catalog The Dicty Stock Center can accept Dictyostelium strains, plasmids, and other materials relevant for research using Dictyostelium such as antibodies and cDNA or genomic libraries.

Proper citation: Dictyostelium discoideum genome database (RRID:SCR_006643) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X