Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Biomedical technology research center that develops and refines accelerator mass spectrometry methods and instrumentation for the precise, quantitative and cost-effective measurement of the effects of drugs and toxicants on humans at safe doses. It facilitates the use of accelerator mass spectrometry in biomedical research and provides training and access for researchers.
Proper citation: National Resource for Biomedical Accelerator Mass Spectrometry (RRID:SCR_009006) Copy
https://bioconductor.org/packages/release/bioc/html/oligo.html
Software R package to analyze oligonucleotide arrays at probe level. Supports Affymetrix (CEL files) and NimbleGen arrays (XYS files). Used for annotation of Affymetrix Gene Array data.
Proper citation: Preprocessing tools for oligonucleotide arrays (RRID:SCR_023726) Copy
https://github.com/pyranges/ncls
Software library for nested containment list data structure for interval overlap queries, like interval tree. It is a static interval-tree that is fast for both construction and lookups.
Proper citation: Nested containment list (RRID:SCR_027849) Copy
https://omics.pnl.gov/software/ms-gf
Software that performs peptide identification by scoring MS/MS spectra against peptides derived from a protein sequence database.
Proper citation: MS-GF+ (RRID:SCR_015646) Copy
http://www.usc.edu/dept/biomed/UTRC/
Biomedical technology research center focusing on the development of very high frequency (above 20 MHz) ultrasonic transducers/arrays for applications in medicine and biology that include ophthalmology, dermatology, vascular surgery, and small animal imaging. The research is pursued simultaneously in three directions: novel piezoelectric materials, very high frequency single element transducers and linear arrays, and finite element modeling and material property measurements. The Center also serves the community through collaborative efforts with investigators having a research interest in high-frequency ultrasound imaging. In addition, it performs the function of training and information dissemination by offering conferences, seminars and specialized courses at the University of Southern California. The Center has set forth a number of goals which define its mission: * Conduct novel research and development of very high frequency (>20MHz) ultrasonic transducers, arrays and imaging applications * Collaborate with other academic institutions, non-profit organizations, and small businesses supported by the NIH to further the development of these high-frequency applications and provide the expertise in transducers necessary for project success * Serve as an educational center for training scientists and engineers interested in ultrasonic transducer technology One of the primary goals of the Center is to provide service to outside investigators and small business. Often an investigator or company has a specific application in mind but is without the expertise to develop the necessary ultrasonic device. Investigators at academic institutions, research institutes, or small businesses supported by NIH grants who have a need for medical ultrasound transducers and are interested in a collaborative effort should contact Dr. Hyung Ham Kim or Dr. K. Kirk Shung. Ultrasound transducers and components can be fabricated either completely by center personnel or in a joint effort with other investigators. In addition, collaborators are encouraged to visit the facility for additional training in fabrication and assembly.
Proper citation: Resource Center for Medical Ultrasonic Transducer Technology (RRID:SCR_001404) Copy
Biomedical technology research center that conducts, catalyzes and enables multiscale biomedical research, focusing on four key activities: 1) integrating computational, data and visualization resources in a transparent, advanced grid environment to enable better access to distributed data, computational resources, instruments and people; 2) developing and deploying advanced computational tools for modeling and simulation, data analysis, query and integration, three-dimensional image processing and interactive visualization; 3) delivering and supporting advanced grid/cyberinfrastructure for biomedical researchers; and 4) training a cadre of new researchers to have an interdisciplinary, working knowledge of computational technology relevant to biomedical scientists. NBCR enables biomedical scientists to address the challenge of integrating detailed structural measurements from diverse scales of biological organization that range from molecules to organ systems in order to gain quantitative understanding of biological function and phenotypes. Predictive multi-scale models and their driving biological research problems together address issues in modeling of sub-cellular biophysics, building molecular modeling tools to accelerate discovery, and defining tools for patient-specific multi-scale modeling. NBCR furthers these driving problems by developing tools and models based on rapid advances in mathematics and information technology, incorporating them into NBCR pipelines or problem solving environments, and addressing the inevitable changes in the underlying cyber-infrastructure technologies and continually adapting codes over time. Their technology focus integrates both the biological applications and the underlying support software into reproducible science workflows that can function across a number of physical infrastructures.
Proper citation: National Biomedical Computation Resource (RRID:SCR_002656) Copy
Biomedical technology research center that develops computer-aided, advanced microscopy for the acquisition of structural and functional data in the dimensional range of 1 nm to 100 um, a range encompassing macromolecules, subcellular structures and cells. Novel specimen-staining methods, imaging instrumentsincluding intermediate high-voltage transmission electron microscopes (IVEMs) and high-speed, large-format laser-scanning light microscopesand computational capabilities are available for addressing mesoscale biological microscopy of proteins and macromolecular complexes in their cellular and tissue environments. These technologies are developed to bridge understanding of biological systems between the gross anatomical and molecular scales and to make these technologies broadly available to biomedical researchers. NCMIR provides expertise, infrastructure, technological development, and an environment in which new information about the 3D ultrastructure of tissues, cells, and macromolecular complexes may be accurately and easily obtained and analyzed. NCMIR fulfills its mission through technology development, collaboration, service, training, and dissemination. It aims to develop preparative methods and analytical approaches to 3D microscopy applicable to neurobiology and cell biology, incorporating equipment and implementing software that expand the analysis of 3D structure. The core research activities in the areas of specimen development, instrument development, and software infrastructures maximize the advantages of higher voltage electron microscopy and correlated light microscopies to make ambitious imaging studies across scales routine, and to facilitate the use of resources by biomedical researchers. NCMIR actively recruits outside users who will not only make use of these resources, but who also will drive technology development and receive training.
Proper citation: National Center for Microscopy and Imaging Research (RRID:SCR_002655) Copy
Biomedical technology research center and training resource for the study of the structure of partially ordered biological molecules, complexes of biomolecules and cellular structures under conditions similar to those present in living cells and tissues. The goal of research at BioCAT is to determine the detailed structure and mechanism of action of biological systems at the molecular level. The techniques used are X-ray fiber diffraction, X-ray solution scattering and X-ray micro-emission and micro-absorption spectroscopy, with an emphasis on time-resolved studies and the development of novel techniques.
Proper citation: BioCAT (RRID:SCR_001440) Copy
http://www.mri-resource.kennedykrieger.org/
Biomedical technology research center that provides expertise for the design of quantitative magnetic resonance imaging (MRI) and spectroscopy (MRS) data acquisition and processing technologies that facilitate the biomedical research of a large community of clinicians and neuroscientists in Maryland and throughout the USA. These methods allow noninvasive assessment of changes in brain anatomy as well as in tissue metabolite levels, physiology, and brain functioning while the brain is changing size during early development and during neurodegeneration, i.e. the changing brain throughout the life span. The Kirby Center has 3 Tesla and 7 Tesla state of the art scanners equipped with parallel imaging (8, 16, and 32-channel receive coils) and multi-transmit capabilities. CIS has an IBM supercomputer that is part of a national supercomputing infrastructure. Resources fall into the following categories: * MRI facilities, image acquisition, and processing * Computing facilities and image analysis * Novel statistical methods for functional brain imaging * Translating laboratory discoveries to patient treatment
Proper citation: National Resource for Quantitative Functional MRI (RRID:SCR_006716) Copy
Provides high-performance tandem mass spectrometry and proteomics, including multiplexed quantitative comparative analysis of protein and post-translational modifications, and a suite of tools for the analysis of mass spectrometry proteomics data. It provides both scientific and technical expertise and state-of-the-art high-performance, tandem mass spectrometric instrumentation. The facility also provides a service for small molecule analysis. Significant instrumentation in the facility includes three QSTAR quadrupole orthogonal time of flight instruments, and both an LTQ-Orbitrap platform with electron transfer dissociation (ETD) and an LTQ-FT linear ion trap FT-ICR instrument equipped with the ability to perform electron capture dissociation (ECD). The Center also has a 4700 Proteomic Analyzer MALDI tandem time of flight instrument; as well as a QTRAP 5500 hybrid triple quadrupole linear ion trap instrument; and a Thermo Fisher LTQ Orbitrap Velos. Major research focuses within the Center are the analysis of post-translational modifications, including phosphorylation and O-GlcNAcylation and development of methods for quantitative comparative analysis of protein and post-translational modification levels. The program also continues to develop one of the leading suites of tools for analysis of mass spectrometry proteomics data, Protein Prospector. The current web-based release allows unrestricted searching of MS and MSMS data, as well as the ability to perform comparative quantitative analysis of samples using isotopic-labeling reagents. It is the only freely-available web-based resource that allows this type of analysis.
Proper citation: National Bio-Organic Biomedical Mass Spectrometry Resource Center (RRID:SCR_009004) Copy
http://www.bioinformatics.ucla.edu/ASAP2
THIS RESOURCE IS NO LONGER IN SERVICE, documented on 8/12/13. An expanded version of the Alternative Splicing Annotation Project (ASAP) database with a new interface and integration of comparative features using UCSC BLASTZ multiple alignments. It supports 9 vertebrate species, 4 insects, and nematodes, and provides with extensive alternative splicing analysis and their splicing variants. As for human alternative splicing data, newly added EST libraries were classified and included into previous tissue and cancer classification, and lists of tissue and cancer (normal) specific alternatively spliced genes are re-calculated and updated. They have created a novel orthologous exon and intron databases and their splice variants based on multiple alignment among several species. These orthologous exon and intron database can give more comprehensive homologous gene information than protein similarity based method. Furthermore, splice junction and exon identity among species can be valuable resources to elucidate species-specific genes. ASAP II database can be easily integrated with pygr (unpublished, the Python Graph Database Framework for Bioinformatics) and its powerful features such as graph query, multi-genome alignment query and etc. ASAP II can be searched by several different criteria such as gene symbol, gene name and ID (UniGene, GenBank etc.). The web interface provides 7 different kinds of views: (I) user query, UniGene annotation, orthologous genes and genome browsers; (II) genome alignment; (III) exons and orthologous exons; (IV) introns and orthologous introns; (V) alternative splicing; (IV) isoform and protein sequences; (VII) tissue and cancer vs. normal specificity. ASAP II shows genome alignments of isoforms, exons, and introns in UCSC-like genome browser. All alternative splicing relationships with supporting evidence information, types of alternative splicing patterns, and inclusion rate for skipped exons are listed in separate tables. Users can also search human data for tissue- and cancer-specific splice forms at the bottom of the gene summary page. The p-values for tissue-specificity as log-odds (LOD) scores, and highlight the results for LOD >= 3 and at least 3 EST sequences are all also reported.
Proper citation: Alternative Splicing Annotation Project II Database (RRID:SCR_000322) Copy
http://www.birncommunity.org/collaborators/function-birn/
The FBIRN Federated Informatics Research Environment (FIRE) includes tools and methods for multi-site functional neuroimaging. This includes resources for data collection, storage, sharing and management, tracking, and analysis of large fMRI datasets. fBIRN is a national initiative to advance biomedical research through data sharing and online collaboration. BIRN provides data-sharing infrastructure, software tools, strategies and advisory services - all from a single source.
Proper citation: Function BIRN (RRID:SCR_007291) Copy
A database which supports high-throughput NMR and MS approaches to the identification and quantification of metabolites present in biological samples. MMCD serves as a hub for information on small molecules of biological interest gathered from electronic databases and the scientific literature. Each metabolite entry in the MMCD is supported by information in separate data fields, which provide the chemical formula, names and synonyms, structure, physical and chemical properties, NMR and MS data on pure compounds under defined conditions where available, NMR chemical shifts determined by empirical and/or theoretical approaches, calculated isotopomer masses, information on the presence of the metabolite in different biological species, and links to images, references, and other public databases. The MMCD search engine supports versatile data mining and allows users to make individual or bulk queries on the basis of experimental NMR and/or MS data plus other criteria.
Proper citation: Madison Metabolomics Consortium Database (RRID:SCR_007803) Copy
Database for the bacterium Escherichia coli K-12 MG1655, the EcoCyc project performs literature-based curation of the entire genome, and of transcriptional regulation, transporters, and metabolic pathways. The long-term goal of the project is to describe the molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists, and for biologists who work with related microorganisms.
Proper citation: EcoCyc (RRID:SCR_002433) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on February 08, 2013. A two year Clinical and Translational Science Award (CTSA) supplement that set up a SHRINE (Shared Health Research Informatics NEtwork) network to create an information exchange environment that successfully shared 4.2M deidentified patient records. The network successfully linked i2b2 sites at UW, UCSF, UC Davis and Harvard Catalyst. Recombinant Data Corporation was actively involved in this implementation. This is a collaborative information exchange pilot project to adapt and extend data discovery tools and processes to enhance research design and retrospective data study capabilities for clinical translational investigators. The novel approach of this project will be to incrementally build a common technical, semantic and appropriately secure and governed distributed system in close partnership with active researchers at three large and geographically distributed academic medical centers. This collaboration will extend the Informatics for Integrating Biology and the Bedside (i2b2) software architecture developed by the Harvard based National Center for Biomedical Computing (NCBC) to support multi-institution data query capabilities. The anticipated outcome of this two-year project is to make high-level anonymized descriptive characteristics of population-level data discoverable for research design, hypothesis generation and retrospective data studies.
Proper citation: i2b2 Cross-Institutional Clinical Translational Research project (RRID:SCR_003367) Copy
http://biositemaps.ncbcs.org/rds/search.html
Resource Discovery System is a web-accessible and searchable inventory of biomedical research resources. Powered by the Resource Discovery System (RDS) that includes a standards-based informatics infrastructure * Biositemaps Information Model * Biomedical Resource Ontology Extensions * Web Services distributed web-accessible inventory framework * Biositemap Resource Editor * Resource Discovery System Source code and project documentation to be made available on an open-source basis. Contributing institutions: University of Pittsburgh, University of Michigan, Stanford University, Oregon Health & Science University, University of Texas Houston. Duke University, Emory University, University of California Davis, University of California San Diego, National Institutes of Health, Inventory Resources Working Group Members
Proper citation: Resource Discovery System (RRID:SCR_005554) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 23, 2013. Homophila utilizes the sequence information of human disease genes from the NCBI OMIM (Online Mendelian Inheritance in Man) database in order to determine if sequence homologs of these genes exist in the current Drosophila sequence database (FlyBase). Sequences are compared using NCBI's BLAST program. The database is updated weekly and can be searched by human disease, gene name, OMIM number, title, subtitle and/or allelic variant descriptions.
Proper citation: Homophila (RRID:SCR_007717) Copy
http://mus.well.ox.ac.uk/mouse/INBREDS/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 19,2025. Data set of genotypes available for 480 strains and 13370 successful SNP assays that are mapped to build34 of the mouse genome, including 107 SNPs that are mapped to random unanchored sequence 13374 SNPs are mapped onto Build 33 of the mouse genome. You can access the data relative to Build 33 or Build 34.
Proper citation: Wellcome-CTC Mouse Strain SNP Genotype Set (RRID:SCR_003216) Copy
Web application to discover resources available at participating networked universities. This distributed platform for creating and sharing semantically rich data is built around semantic web technologies and follows linked open data principles.
Proper citation: Eagle I (RRID:SCR_013153) Copy
http://www.informatics.jax.org/home/recombinase
Curated data about all recombinase-containing transgenes and knock-ins developed in mice providing a comprehensive resource delineating known activity patterns and allows users to find relevant mouse resources for their studies.
Proper citation: Recombinase (cre) Activity (RRID:SCR_006585) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.