Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Part of zebrafish genome project. ZGC project to produce cDNA libraries, clones and sequences to provide complete set of full-length (open reading frame) sequences and cDNA clones of expressed genes for zebrafish. All ZGC sequences are deposited in GenBank and clones can be purchased from distributors of IMAGE consortium. With conclusion of ZGC project in September 2008, GenBank records of ZGC sequences will be frozen, without further updates. Since definition of what constitutes full-length coding region for some of genes and transcripts for which we have ZGC clones will likely change in future, users planning to order ZGC clones will need to monitor for these changes. Users can make use of genome browsers and gene-specific databases, such as UCSC Genome browser, NCBI's Map Viewer, and Entrez Gene, to view relevant regions of genome (browsers) or gene-related information (Entrez Gene).
Proper citation: Zebrafish Gene Collection (RRID:SCR_007054) Copy
A resource for information pertaining to methodologies, tools and technologies of gene expression. The website offers resources for sequence analysis, database services, and other technologies of gene expression and regulation.
Proper citation: IFTI-Mirage (RRID:SCR_000505) Copy
Consortium represents all publicly available gene trap cell lines, which are available on non-collaborative basis for nominal handling fees. Researchers can search and browse IGTC database for cell lines of interest using accession numbers or IDs, keywords, sequence data, tissue expression profiles and biological pathways, can find trapped genes of interest on IGTC website, and order cell lines for generation of mutant mice through blastocyst injection. Consortium members include: BayGenomics (USA), Centre for Modelling Human Disease (Toronto, Canada), Embryonic Stem Cell Database (University of Manitoba, Canada), Exchangeable Gene Trap Clones (Kumamoto University, Japan), German Gene Trap Consortium provider (Germany), Sanger Institute Gene Trap Resource (Cambridge, UK), Soriano Lab Gene Trap Resource (Mount Sinai School of Medicine, New York, USA), Texas Institute for Genomic Medicine - TIGM (USA), TIGEM-IRBM Gene Trap (Naples, Italy).
Proper citation: International Gene Trap Consortium (RRID:SCR_002305) Copy
http://sourceforge.net/projects/skewer/
Software program for adapter trimming that is specially designed for processing Illumina paired-end sequences.
Proper citation: skewer (RRID:SCR_001151) Copy
A collection of high quality multiple sequence alignments for objective, comparative studies of alignment algorithms. The alignments are constructed based on 3D structure superposition and manually refined to ensure alignment of important functional residues. A number of subsets are defined covering many of the most important problems encountered when aligning real sets of proteins. It is specifically designed to serve as an evaluation resource to address all the problems encountered when aligning complete sequences. The first release provided sets of reference alignments dealing with the problems of high variability, unequal repartition and large N/C-terminal extensions and internal insertions. Version 2.0 of the database incorporates three new reference sets of alignments containing structural repeats, trans-membrane sequences and circular permutations to evaluate the accuracy of detection/prediction and alignment of these complex sequences.
Within the resource, users can look at a list of all the alignments, download the whole database by ftp, get the "c" program to compare a test alignment with the BAliBASE reference (The source code for the program is freely available), or look at the results of a comparison study of several multiple alignment programs, using BAliBASE reference sets.
Proper citation: BAliBASE (RRID:SCR_001940) Copy
http://nucleobytes.com/index.php/4peaks
Software application for viewing and editing sequence trace files.
Proper citation: 4Peaks (RRID:SCR_000015) Copy
The European Bioinformatics Institute (EBI) toolbox area provides a comprehensive range of tools for the field of bioinformatics. These are subdivided into categories in the left menu for convenience. EBI has developed a large number of very useful bioinformatics tools. A few examples include: - Similarity & Homology - the BLAST or FASTA programs can be used to look for sequence similarity and infer homology. - Protein Functional Analysis - InterProScan can be used to search for motifs in your protein sequence. - Proteomic Services NEW - UniProt DAS server allows researchers to show their research results in the context of UniProtKB/Swiss-Prot annotation. - Sequence Analysis - ClustalW2 a sequence alignment tool. - Structural Analysis - MSDfold can be used to query your protein structure and compare it to those in the Protein Data Bank (PDB). - Web Services - provide programmatic access to the various databases and retrieval/analysis services EBI provides. - Tools Miscellaneous - Expression Profiler a set of tools for clustering, analysis and visualization of gene expression and other genomic data. Sponsors: This resource is sponsored by EBI.
Proper citation: Toolbox at the European Bioinformatics Institute (RRID:SCR_002872) Copy
https://github.com/schloi/MARVEL
Software set of tools that facilitate overlapping, patching, correction and assembly of noisy long reads.
Proper citation: Marvel (RRID:SCR_017621) Copy
https://github.com/davidemms/OrthoFinder
Software Python application for comparative genomics analysis. Finds orthogroups and orthologs, infers rooted gene trees for all orthogroups and identifies all of gene duplcation events in those gene trees, infers rooted species tree for species being analysed and maps gene duplication events from gene trees to branches in species tree, improves orthogroup inference accuracy. Runs set of protein sequence files, one per species, in FASTA format.
Proper citation: OrthoFinder (RRID:SCR_017118) Copy
http://www.imgt.org/HighV-QUEST/home.action
Next generation B and T cell sequence alignment and characterization online surface by IMGT. Web portal for immunoglobulin (IG) or antibody and T cell receptor (TR) analysis from NGS high throughput and deep sequencing.
Proper citation: IMGT HighV-QUEST (RRID:SCR_018196) Copy
http://www.cbs.dtu.dk/services/SignalP/
Web application for prediction of the presence and location of signal peptide cleavage sites in amino acid sequences from different organisms. The method incorporates a prediction of cleavage sites and a signal peptide/non-signal peptide prediction based on a combination of several artificial neural networks.
Proper citation: SignalP (RRID:SCR_015644) Copy
http://dynamine.ibsquare.be/submission/
An NMR based method for protein folding prediction. Users can enter a UniProt identifier, FASTA sequences, or upload a file containing FASTA sequences and results are returned., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: DynaMine (RRID:SCR_014559) Copy
A web program that can locate residue periodicities in either amino acid or DNA sequences. It is based on an algorithm of Dr. A.D. McLachlan (1977). NOTE: You must use a Java compatible browser to run the application.
Proper citation: FT (RRID:SCR_006228) Copy
http://athina.biol.uoa.gr/bioinformatics/NON-RED/index.html
A web tool to select biological sequences from a given set, with similarity / homology less than a user-defined level. This web-based application takes as input a set of N sequences and outputs a set of sequences of user-determined redundancy. Initially, the algorithm runs an all-against-all BLAST alignment on the input data set and creates an NxN matrix of pairwise distances defined by the similarity percentages. In the next step, the algorithm removes the sequence with the largest number of neighbors, causing that sequence not to be counted as a neighbor of any other sequence during the next iterations. It then reassesses the number of neighbors of each sequence and repeats the previous step until the sequences left over have no more neighbors. The user can specify the similarity (%) threshold and the minimum coverage length of the alignments. Sequences with a similarity below the threshold or a smaller coverage than the minimum length are not considered to be neighbors.
Proper citation: NON-RED (RRID:SCR_006225) Copy
http://athina.biol.uoa.gr/bioinformatics/waveTM/
A web tool for the prediction of transmembrane segments in alpha-helical membrane proteins. A sliding window of 20 residues is used in order to calculate an average residue hydrophobicity profile, using a hydrophobicity scale. Discrete Wavelet Transform is applied on the average residue hydrophobicity signal and the different frequency coefficients produced are adaptively thresholded so that a denoised signal is reconstructed. A dynamic programming algorithm processes the denoised signal to provide the optimal model for the number, the length and the location of membrane-spanning segments. The end points of the predicted segments are extended to include flanking hydrophobic residues. Topology prediction can also be obtained in conjunction with OrienTM (Liakopoulos et al, 2001). Analysis of a non-redundant test set, provides a ~95% per segment accuracy and ~90% per residue accuracy. Now, you can: * Run waveTM on a sequence * Browse the results obtained with the algorithm * View additional material concerning the hydrophobicity scale
Proper citation: waveTM (RRID:SCR_006199) Copy
http://igs-server.cnrs-mrs.fr/mgdb/Rickettsia/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 18, 2016. Rickettsia are obligate intracellular bacteria living in arthropods. They occasionally cause diseases in humans. To understand their pathogenicity, physiologies and evolutionary mechanisms, RicBase is sequencing different species of Rickettsia. Up to now we have determined the genome sequences of R. conorii, R. felis, R. bellii, R. africae, and R. massiliae. The RicBase aims to organize the genomic data to assist followup studies of Rickettsia. This website contains information on R. conorii and R. prowazekii. A R. conorii and R. prowazekii comparative genome map is also available. Images of genome maps, dendrogram, and sequence alignment allow users to gain a visualization of the diagrams.
Proper citation: Rickettsia Genome Database (RRID:SCR_007102) Copy
http://athina.biol.uoa.gr/PRED-TMR/
A web server that predicts transmembrane domains in proteins using solely information contained in the sequence itself. The algorithm refines a standard hydrophobicity analysis with a detection of potential termini (edges, starts and ends) of transmembrane regions. This allows both to discard highly hydrophobic regions not delimited by clear start and end configurations and to confirm putative transmembrane segments not distinguishable by their hydrophobic composition. The accuracy obtained on a test set of 101 non homologous transmembranes proteins with reliable topologies compares well with that of other popular existing methods. Only a slight decrease in prediction accuracy was observed when the algorithm was applied to all transmembrane proteins of the SwissProt database (release 35).
Proper citation: PRED-TMR (RRID:SCR_006203) Copy
http://wwwmgs.bionet.nsc.ru/mgs/programs/panalyst/
WebProAnalyst provides web-accessible analysis for scanning the quantitative structure-activity relationships in protein families. It searches for a sequence region, whose substitutions are correlated with variations in the activities of a homologous protein set, the so-called activity modulating sites. WebProAnalyst allows users to search for the key physicochemical characteristics of the sites that affect the changes in protein activities. It enables the building of multiple linear regression and neural networks models that relate these characteristics to protein activities. WebProAnalyst implements multiple linear regression analysis, back propagation neural networks and the Structure-Activity Correlation/Determination Coefficient (SACC/SADC). A back propagation neural network is implemented as a two-layered network, one layer as input, the other as output (Rumelhart et al, 1986). WebProAnalyst uses alignment of amino acid sequences and data on protein activity (pK, Km, ED50, among others). The input data are the numerical values for the physicochemical characteristics of a site in the multiple alignment given by a slide window. The output data are the predicted activity values. The current version of WebProAnalyst handles a single activity for a single protein. The SACC/SADC may be defined as an estimate of the strongest multiple correlation between the physicochemical characteristics of a site in a multiple alignment and protein activities. The SACC/SADC coefficient makes possible the calculation of the possible highest correlation achievable for the quantitative relationship between the physicochemical properties of sites and protein activities. The SACC/SADC is a convenient means for an arrangement of positions by their functional significance. WebProAnalyst outputs a list of multiple alignment positions, the respective correlation values, also regression analysis parameters for the relationships between the amino acid physicochemical characteristics at these positions and the protein activity values.
Proper citation: Webproanalyst (RRID:SCR_008348) Copy
http://phylopythias.bifo.helmholtz-hzi.de/index.php?phase=wait
Web Server for Taxonomic Assignment of Metagenome Sequences that is a fast and accurate sequence composition-based classifier that utilizes the hierarchical relationships between clades. Taxonomic assignments with the web server can be made with a generic model, or with sample-specific models that users can specify and create. Several interactive visualization modes and multiple download formats allow quick and convenient analysis and downstream processing of taxonomic assignments.
Proper citation: PhyloPythiaS (RRID:SCR_011923) Copy
http://viewer.shigen.info/cgi-bin/crispr/crispr.cgi
Web tool to show micro homology sequences striding over double strand break point created by CRISPR/Cas9 system. Used to search for CRISPR target site with micro-homology sequences. Used to predict deletion pattern.
Proper citation: NBRP Medaka CRISPR target site (RRID:SCR_018159) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.