Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Arizona CERT is an independent research and education center whose mission is to improve therapeutic outcomes and reduce adverse events caused by drug interactions and drugs that prolong the QT interval, especially those affecting women. The CERTs mission is to conduct research and provide education that will advance the optimal use of drugs, medical devices, and biological products The Arizona CERT is a program of the Critical Path Institute in collaboration with the Center for Health Outcomes and PharmacoEconomic Research at The University of Arizona College of Pharmacy. It is one of 14 national CERTs funded by the U.S. Agency for Healthcare Research and Quality (AHRQ).
Proper citation: Arizona Center for Education and Research on Therapeutics (RRID:SCR_007201) Copy
http://www.port.ac.uk/research/exrc/
Supports researchers using Xenopus models. Researchers are encouraged to deposit Xenopus transgenic and mutant lines, Xenopus in situ hybridization probes, Xenopus specific antibodies and Xenopus expression clones with the Centre. EXRC staff perform quality assurance testing on these reagents and then make them available to researchers at cost. Supplies wild-type Xenopus, embryos, oocytes and Xenopus tropicalis fosmids.
Proper citation: European Xenopus Resource Center (RRID:SCR_007164) Copy
http://www.gladstone.ucsf.edu/gladstone/site/gind/
GIND provides a highly interactive academic environment and state-of-the-art research facilities that are ideal for training in neuroscience and biomedical research. GIND Investigators hold university appointments at UCSF and participate in educational activities, including the teaching and training of graduate students and postdoctoral fellows. Additionally, GIND is actively engaged in efforts to translate scientific discoveries into better treatments for major diseases of the nervous system. Sponsors: Support for GIND comes from the University of California at San Francisco.
Proper citation: Gladstone Institute of Neurological Disease (RRID:SCR_008072) Copy
Lab interested in understanding how neuronal circuitries of the brain support its cognitive capacities. Its goal is to provide rational, mechanistic explanations of cognitive functions at a descriptive level. In the lab''s view, the most promising area of cognitive faculties for scientific inquiry is memory, since it is a well-circumscribed term, can be studied in animals and substantial knowledge has accumulated on the molecular mechanisms of synaptic plasticity. Available software: * NeuroScope: NeuroScope can display local field potentials (EEG), neuronal spikes, behavioral events, as well as the position of the animal in the environment. It also features limited editing capabilities. * Klusters: Klusters is a powerful and easy-to-use cluster cutting application designed to help neurophysiologists sort action potentials from multiple neurons on groups of electrodes (e.g., tetrodes or multisite silicon probes). * KlustaKwik: KlustaKwik is a program for automatic cluster analysis, specifically designed to run fast on large data sets. * MATLAB m-files: A selection of MATLAB files developed in the lab., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Buzsaki Lab (RRID:SCR_008020) Copy
http://www.jax.org/imr/index.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 08, 2012. The function of the IMR is to select, import, cryopreserve, maintain, and distribute these important strains of mice to the research community. To improve their value for research, the IMR also undertakes genetic development of stocks, such as transferring mutant genes or transgenes to defined genetic backgrounds and combining transgenes and/or targeted mutations to create new mouse models for research. The function of the IMR is to: * select biomedically important stocks of transgenic, chemically induced, and targeted mutant mice * import these stocks into the Jackson Laboratory by rederivation procedures that rid them of any pathogens they might carry * cryopreserve embryos from these stocks to protect them against accidental loss and genetic contamination * backcross the mutation onto an inbred strain, if necessary * distribute them to the scientific community More than 1000 mutant stocks have been accepted by the IMR from 1992 through December 2006. Current holdings include models for research on cancer; breast cancer; immunological and inflammatory diseases; neurological diseases; behavioral, cardiovascular and heart diseases; developmental, metabolic and other diseases; reporter (e.g., GFP) and recombinase (e.g., cre/loxP) strains. About eight strains a month are being added to the IMR holdings. Research is being conducted on improved methods for assisted reproduction and speed congenic production. Most of the targeted mutants arrive on a mixed 129xC57BL/6 genetic background, and as many of these as possible are backcrossed onto an inbred strain (usually C57BL/6J). In addition, new mouse models are being created by intercrossing carriers of specific transgenes and/or targeted mutations. Simple sequence length polymorphism DNA markers are being used to characterize and evaluate differences between inbred strains, substrains, and embryonic stem cell lines.
Proper citation: Induced Mutant Resource (RRID:SCR_008366) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented September 6, 2016. AMBeR's aim is to bring together Australia's unique resources for genetic epidemiology and genomics with high level expertise in bioinformatics and statistical science, conduct advanced methodological research, develop new research capacity and competitiveness in cutting-edge techniques, bring them to bear on important medical research problems, train young Australians in bioinformatics and advanced biostatistics, and transfer this expertise to the medical research community.
Proper citation: Australian Medical Bioinformatics Resource (RRID:SCR_008385) Copy
http://faculty.washington.edu/chudler/ehc.html
This web site focuses on neuroscience, the study of the nervous system. Links on this page are limited to those Dr. Chundler finds to be the most interesting and useful.
Proper citation: Eric H. Chundlers Links (RRID:SCR_008328) Copy
It provides the communications/database network needed for efficient acquisition and sharing of existing captive primates and primate-related resources by investigators and institutions both nationally and internationally. The overall goal of this service is to maximize the use of existing captive primates, thereby reducing the total number of primates needed for research, and in turn, helping to promote the conservation of primate populations in the wild. Services Provided PRRS services include 1) Referral Service, an immediate, staff-operated service designed to match investigator inquiries/requests to the available resource listings maintained in the PRRS master database; 2) CURRENT LISTINGS, a twice-monthly newsletter listing current availability of, as well as needs for, primates, tissues, equipment, and services; 3) ANNUAL RESOURCE GUIDE (ARG), an annual publication that lists subscribing suppliers of primates, laboratories, equipment, and commercial services such as transportation and quarantine facilities; and 4) Web site, an interactive site that includes the full text of CURRENT LISTINGS as well as online forms for posting resource availabilities/needs and listing updates, the current ARG, a diagram of primate taxonomy with illustrative photographs, online renewal and feedback forms, general service information, and links to other sites of interest to the primate research community. The PRRS also maintains a database of colonies, primates, and primate materials to which notices of availability and need can be referred. Services are available without charge to government-supported researchers and other scientists in the United States and abroad using primates in their work. Sponsors: The PRRS is made possible by grant RR-01240 from the National Center for Research Resources, National Institutes of Health.
Proper citation: Primate Resource Referral Service (RRID:SCR_002828) Copy
A private philanthropy with principal interests in brain science, immunology, and education. The portal provides general information about the brain and current brain research, links to validated sites related brain disorders, education resources and lesson plans, and support for the training of in-school arts specialists. The Dana Foundation science and health grants support brain research in neuroscience and immunology and their interrelationship in human health and disease. The grant sections include brain and immuno-imaging, clinical neuroscience research, human immunology and neuroimmunology. The Foundation also occasionally sponsors workshops and forums for working scientists, as well as offering funding for selected young researchers to continue their education or to attend seminars and workshops elsewhere.
Proper citation: Dana Foundation (RRID:SCR_002789) Copy
The VPH NoE is a project which aims to help support and progress European research in biomedical modeling and simulation of the human body. This project will improve our ability to predict, diagnose and treat disease, and have a dramatic impact on the future of healthcare, the pharmaceutical and medical device industries. The VPH Network of Excellence (VPH NoE) is designed to foster, harmonize and integrate pan-European research in the field of i) patient-specific computer models for personalised and predictive healthcare and ii) ICT-based tools for modeling and simulation of human physiology and disease-related processes. The main objectives of the VPH Network of Excellence are to support the: :- Coordination of research portfolios of VPH NoE partners through initiation of Exemplar integrative research projects that encourage inter-institution and interdisciplinary VPH research; :- Integration of research infrastructures of VPH NoE partners through development of the VPH ToolKit: a shared and mutually accessible source of research equipment, managerial and research infrastructures, facilities and services; :- Development of a portfolio of interdisciplinary training activities including a formal consultation on, and assessment of, VPH careers; :- Establishment of a core set of VPH-related dissemination and networking activities which will engage everyone from partners within the VPH NoE/other VPH projects, to national policy makers, to the public at large; :- Creation of Industrial, Clinical and Scientific Advisory Boards that will jointly guide the direction of the VPH NoE and, through consultation, explore the practical and legal options for real and durable integration within the VPH research community; :- Implementation of key working groups that will pursue specific issues relating to VPH, notably integrating VPH research worldwide through international physiome initiatives. Finally, by involving clinical and industrial stakeholders, VPH NoE also plans to lay a reliable ground to support sustainable interactions and collaboration between research and healthcare communities. Virtual Physiological Human lists, as its main target outcome, patient-specific computer models for personalized and predictive healthcare and ICT-based tools for modeling and simulation of human physiology and disease-related processes. Collaborative projects (IPs and STREPs) within the call will meet specific objectives, addressing: patient-specific computational modeling and simulation of organs or systems data integration and new knowledge extraction and clinical applications and demonstration of tangible benefits of patient-specific computational models. The networking action outlined within the call - the VPH NoE - should serve to connect these efforts, and lay the foundations for the methodological and technical framework to support such research. It should also build on previous EC investment in this field, including the outcomes of VPH type' projects funded within the EU Sixth Framework Programme, and through other National and International initiatives. The Virtual Physiological Human Network of Excellence (VPH NoE) has been designed with "service to the community" of VPH researchers as its primary purpose. Its aims range from the development of a VPH ToolKit and associated infrastructural resources, through integration of models and data across the various relevant levels of physiological structure and functional organization, to VPH community building and support. The VPH NoE aims to foster the development of new and sustainable educational, training and career structures for those involved in VPH related science, technology and medicine. The VPH NoE constitutes a leading group of universities, institutes and organizations who will, by integrating their experience and ongoing activities in VPH research, promote the creation of an environment that actively supports and nurtures interdisciplinary research, education, training and strategic development. The VPH NoE will lead the coordination of diverse activities within the VPH Initiative to help deliver: new environments for predictive, patient-specific, evidence-based, more effective and safer healthcare; improved semantic interoperability of biomedical information and contribution to a common health information infrastructure; facile, on-demand access to distributed European computational infrastructure to support clinical decision making; and increased European multidisciplinary research excellence in biomedical informatics and molecular medicine by fostering closer cooperation between ICT, medical device, medical imaging, pharmaceutical and biotech companies. The VPH NoE will connect the diverse VPH Initiative projects, including not only those funded as part of the VPH initiative but also those of previous EC frameworks and national funding schemes, together with industry, healthcare providers, and international organizations, thereby ensuring that these impacts will be realized. VPH NoE work packages and project structure The VPH NoE activities are divided between five main work packages (follow the links at the top of the page for more information on each). In brief, the focus of each work package is as follows: -Work package 1: Network Management -Work package 2: VPH NoE Exemplar Projects -Work package 3: VPH NoE ToolKit development -Work package 4: VPH NoE Training and Career Development -Work package 5: Spreading Excellence within the VPH NoE and VPH-I In view of its role as the networking action for the VPH Initiative, all VPH NoE activities have been designed to serve and interconnect not only the VPH NoE core members, but also the projects funded within the VPH call (VPH-I) and the wider research community. Key activities which the VPH NoE will pursue, in support of the development of a research environment which facilitates integrative, interdisciplinary and multilevel VPH research, are: -Support for integrative research -Training and dissemination activities -Networking activities Sponsors: VPH NoE is supported by The Directorate-General Research (DG RTD) and The Directorate-General Information Society and Media (DG INFSO).
Proper citation: Virtual Physiological Human Network of Excellence (RRID:SCR_002855) Copy
Database and central repository for genetic, genomic, molecular and cellular phenotype data and clinical information about people who have participated in pharmacogenomics research studies. The data includes, but is not limited to, clinical and basic pharmacokinetic and pharmacogenomic research in the cardiovascular, pulmonary, cancer, pathways, metabolic and transporter domains. PharmGKB welcomes submissions of primary data from all research into genes and genetic variation and their effects on drug and disease phenotypes. PharmGKB collects, encodes, and disseminates knowledge about the impact of human genetic variations on drug response. They curate primary genotype and phenotype data, annotate gene variants and gene-drug-disease relationships via literature review, and summarize important PGx genes and drug pathways. PharmGKB is part of the NIH Pharmacogenomics Research Network (PGRN), a nationwide collaborative research consortium. Its aim is to aid researchers in understanding how genetic variation among individuals contributes to differences in reactions to drugs. A selected subset of data from PharmGKB is accessible via a SOAP interface. Downloaded data is available for individual research purposes only. Drugs with pharmacogenomic information in the context of FDA-approved drug labels are cataloged and drugs with mounting pharmacogenomic evidence are listed.
Proper citation: PharmGKB (RRID:SCR_002689) Copy
Computational biology research at Memorial Sloan-Kettering Cancer Center (MSKCC) pursues computational biology research projects and the development of bioinformatics resources in the areas of: sequence-structure analysis; gene regulation; molecular pathways and networks, and diagnostic and prognostic indicators. The mission of cBio is to move the theoretical methods and genome-scale data resources of computational biology into everyday laboratory practice and use, and is reflected in the organization of cBio into research and service components ~ the intention being that new computational methods created through the process of scientific inquiry should be generalized and supported as open-source and shared community resources. Faculty from cBio participate in graduate training provided through the following graduate programs: * Gerstner Sloan-Kettering Graduate School of Biomedical Sciences * Graduate Training Program in Computational Biology and Medicine Integral to much of the research and service work performed by cBio is the creation and use of software tools and data resources. The tools that we have created and utilize provide evidence of our involvement in the following areas: * Cancer Genomics * Data Repositories * iPhone & iPod Touch * microRNAs * Pathways * Protein Function * Text Analysis * Transcription Profiling
Proper citation: Computational Biology Center (RRID:SCR_002877) Copy
http://www.genome.jp/kegg/expression/
Database for mapping gene expression profiles to pathways and genomes. Repository of microarray gene expression profile data for Synechocystis PCC6803 (syn), Bacillus subtilis (bsu), Escherichia coli W3110 (ecj), Anabaena PCC7120 (ana), and other species contributed by the Japanese research community.
Proper citation: Kyoto Encyclopedia of Genes and Genomes Expression Database (RRID:SCR_001120) Copy
http://www.gmu.edu/departments/krasnow/
The Krasnow Institute seeks to expand understanding of mind, brain, and intelligence by conducting research at the intersection of the separate fields of cognitive psychology, neurobiology, and the computer-driven study of artificial intelligence and complex adaptive systems. These separate disciplines increasingly overlap and promise progressively deeper insight into human thought processes. The Institute also examines how new insights from cognitive science research can be applied for human benefit in the areas of mental health, neurological disease, education, and computer design. It is this informed access to mind and brain that is the core of the mission of The Krasnow Institute. While their goals and tools are scientific, they also are fully cognizant of the applications of the results for the benefit of mankind, in areas like mental health, neurological diseases, and computer design. In asking the major questions they realized the necessity of being flexible, innovative, and trans-disciplinary. Therefore, they became dedicated to bringing together scholars from a wide variety of specialties and providing a milieu where they can be both productive and interactive. This institute will provide these researchers with the tools required to move ahead and create an environment of optimal scientific integrity coupling innovation with risk taking. The Krasnow institute is especially attuned to the deep insights from evolutionary biology, which is at the root of understanding all organismic functions including cognition; computer studies of complex systems, which present a revolution in our ability to deal with the world of interactive agents; and a long history of cognitive psychology, which provides a huge data base of human abilities and responses. It also continues to develop its long-term research program based on the contributions of George Mason University faculty holding joint appointments at Krasnow and other GMU academic departments. Additionally, the Krasnow Institute Department of Molecular Neuroscience, together with the College of Science (COS) and the College of Humanities and Social Sciences (CHSS), oversees the campus-wide Neuroscience Council in developing the Neuroscience PhD curriculum. Research groups in the Krasnow institute include: - Adaptive Systems Laboratory - Center for Neural Dynamics - Center for Social Complexity - Center for the Study of Neuroeconomics o Neuroeconomics Laboratory - Comparative Vertebrate Neurobiology Research Group - Center for Neuroinformatics, Neural Structures, and Neuroplasticity (CN3) o Computational and Experimental Neuroplasticity (CENlab) o Computational Neuroanatomy Group o Physiological and Behavioral Neuroscience in Juveniles (PBNJ) Lab - Receptor Complexes and Signaling Lab - Krasnow Investigations of Developmental Learning and Behavior (KIDLAB) - Neuro Imaging Core of the Krasnow Institute
Proper citation: George Mason University: Krasnow Institute for Advanced Study (RRID:SCR_001741) Copy
http://www.cogneurosociety.org/
The Cognitive Neuroscience Society (CNS) is committed to the development of mind and brain research aimed at investigating the psychological, computational, and neuroscientific bases of cognition. Since its founding in 1994, the Society has been dedicated to bringing its 2000 worldwide members the latest research and dialogues in order to facilitate public, professional and scientific discourse. The term cognitive neuroscience has now been with us for almost three decades, and identifies an interdisciplinary approach to understanding the nature of thought. Our members, who are engaged in research focused on elucidating the biological underpinnings of mental processes, form a network of scientists and scholars working at the interface of mind, brain and behavior research. The findings of this research are presented at our member-supported annual scientific conference. The three-day program of plenary speakers, symposia, posters and special events covers all aspects of cognitive neuroscience research. The Society also disseminates information regarding employment opportunities, training fellowships, research grants, and information on related scientific conferences in its monthly newsletter. Our members can receive the Journal of Cognitive Neuroscience at a substantial discount.
Proper citation: Cognitive Neuroscience Society (RRID:SCR_001990) Copy
The Brain and Behavior Research Foundation (formerly NARSAD, the National Alliance for Research on Schizophrenia and Depression) is committed to alleviating the suffering of mental illness by awarding grants that will lead to advances and breakthroughs in scientific research. Additionally, learn about brain and behavior disorders and upcoming events.
100% of all donor contributions for research are invested in NARSAD Grants leading to discoveries in understanding causes and improving treatments of disorders in children and adults, such as depression, bipolar disorder, schizophrenia, autism, attention deficit hyperactivity disorder, and anxiety disorders like obsessive-compulsive and post-traumatic stress disorders. Over a quarter of a century, we have awarded nearly $300 million worldwide to more than 3,000 scientists carefully selected by our prestigious Scientific Council. We receive no government funding. All of our work relies on contributions from families, foundations and other caring donors.
Proper citation: Brain and Behavior Research Foundation (RRID:SCR_001992) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. The World Parkinson's Disease Association is an alliance of members from all over the world who have come together to share information about Parkinson's disease. In order to further Parkinson's research and better the condition of those diagnosed with the disease, the Association: establishes computerized connections; takes part in and/or finances research activities; urges pharmaceutical companies and government institutions of the various countries to support the guidelines recommended by the associations of Parkinson's patients; and coordinates and promotes interchange of information among its members with the aim of solving problems of mutual interest.
Proper citation: World Parkinson Disease Association (RRID:SCR_002035) Copy
http://www.humanbrainmapping.org/i4a/pages/index.cfm?pageid=1
International society dedicated to advancing understanding of anatomical and functional organization of human brain using neuroimaging. Primary function of society is to provide educational forums for exchange of up-to-the-minute and groundbreaking research across neuroimaging methods and applications. OHBM achieves this through its member led committees and Annual Meeting that is held in different locations throughout the world.
Proper citation: Organization for Human Brain Mapping (RRID:SCR_001978) Copy
Project portal for publishing, citing, sharing and discovering research data. Software, protocols, and community connections for creating research data repositories that automate professional archival practices, guarantee long term preservation, and enable researchers to share, retain control of, and receive web visibility and formal academic citations for their data contributions. Researchers, data authors, publishers, data distributors, and affiliated institutions all receive appropriate credit. Hosts multiple dataverses. Each dataverse contains studies or collections of studies, and each study contains cataloging information that describes the data plus the actual data files and complementary files. Data related to social sciences, health, medicine, humanities or other sciences with an emphasis in human behavior are uploaded to the IQSS Dataverse Network (Harvard). You can create your own dataverse for free and start adding studies for your data files and complementary material (documents, software, etc). You may install your own Dataverse Network for your University or organization.
Proper citation: Dataverse Network Project (RRID:SCR_001997) Copy
http://www.nasonline.org/news-and-multimedia/podcasts/
Subscribe to the National Academy of Sciences podcasts to learn more about scientists and their work, the latest in research, and key findings of National Research Council reports. * InterViews: InterViews provides first-person accounts of the lives and work of National Academy of Sciences members. In this series of one-on-one conversations, scientists talk about what inspired them to pursue the careers they chose and describe some of the most fascinating aspects of their research. * Science Sessions: The Proceedings of the National Academy of Sciences offers brief, 5-minute, nontechnical conversations with cutting-edge researchers, including members of the National Academy of Sciences, and policymakers as they discuss topics relevant to today''s scientific community. Learn the behind-the-scenes story of work published in PNAS, plus a broad range of scientific news about discoveries that affect the world around us. * News from the National Academies: Listen to the latest news conferences and public briefings on National Research Council and Institute of Medicine reports. * Sounds of Science: This informative and entertaining series puts a spotlight on the high-impact work of the National Research Council. Focusing on a wide range of critical issues in science, engineering, and medicine, these short episodes are a quick and easy way to tune in our key findings and important recommendations. * Cultural Programs: The Cultural Programs of the National Academy of Sciences presents public exhibitions, lectures, and other programs exploring the intersections of art, science, and culture. The podcast features audio recordings of past lectures and other events. * Engineering Innovation: This weekly podcast from the National Academy of Engineering highlights exciting developments in engineering and provides technical context to stories in the news. The 40-second episodes demonstrate how engineers are making an impactin energy, health, the environment, sports, and more.
Proper citation: National Academy of Sciences Podcasts (RRID:SCR_005124) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.