Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 out of 191 results
Snippet view Table view Download 191 Result(s)
Click the to add this resource to a Collection

http://www.med.umich.edu/tamc/

A service for preparing genetically modified mice and rats for investigators at the University of Michigan. These mice models are typically used to study gene function, gene expression, gene regulation, and for the development of animal models of human disease and gene therapy reagents. TAMC provide access to their micromanipoulation and embryos stem cell workstations along with necessary reagents such as specialized plasmids, embryonic stem (ES) cell lines, FBS, and feeder cells certified for ES cell culture.

Proper citation: Transgenic Animal Model Core (RRID:SCR_000776) Copy   


https://www.iitcinc.com/Incapacitane.html

Hardware that is used to test and assess pain and inflammation of the hind limbs on mice and rats. Dynamic weight bearing enables the test to be implemented on both limbs, while inflicting less stress on the subject animal.

Proper citation: IITC Incapacitance Meter (RRID:SCR_016143) Copy   


http://datahub.io/dataset/kupkb

A collection of omics datasets (mRNA, proteins and miRNA) that have been extracted from PubMed and other related renal databases, all related to kidney physiology and pathology giving KUP biologists the means to ask queries across many resources in order to aggregate knowledge that is necessary for answering biological questions. Some microarray raw datasets have also been downloaded from the Gene Expression Omnibus and analyzed by the open-source software GeneArmada. The Semantic Web technologies, together with the background knowledge from the domain's ontologies, allows both rapid conversion and integration of this knowledge base. SPARQL endpoint http://sparql.kupkb.org/sparql The KUPKB Network Explorer will help you visualize the relationships among molecules stored in the KUPKB. A simple spreadsheet template is available for users to submit data to the KUPKB. It aims to capture a minimal amount of information about the experiment and the observations made.

Proper citation: Kidney and Urinary Pathway Knowledge Base (RRID:SCR_001746) Copy   


  • RRID:SCR_001644

    This resource has 1+ mentions.

https://www.cmtk.org/

A Python-based open source toolkit for magnetic resonance connectome mapping, data management, sharing, visualization and analysis. The toolkit includes the connectome mapper (a full DMRI processing pipeline), a new file format for multi modal data and metadata, and a visualization application.

Proper citation: Connectome Mapping Toolkit (RRID:SCR_001644) Copy   


https://rgd.mcw.edu/rgdweb/portal/home.jsp?p=4

An integrated resource for information on genes, QTLs and strains associated with diabetes. The portal provides easy acces to data related to both Type 1 and Type 2 Diabetes and Diabetes-related Obesity and Hypertension, as well as information on Diabetic Complications. View the results for all the included diabetes-related disease states or choose a disease category to get a pull-down list of diseases. A single click on a disease will provide a list of related genes, QTLs, and strains as well as a genome wide view of these via the GViewer tool. A link from GViewer to GBrowse shows the genes and QTLs within their genomic context. Additional pages for Phenotypes, Pathways and Biological Processes provide one-click access to data related to diabetes. Tools, Related Links and Rat Strain Models pages link to additional resources of interest to diabetes researchers.

Proper citation: Diabetes Disease Portal (RRID:SCR_001660) Copy   


http://www.rrrc.us/

Supplies biomedical investigators with rat models, embryonic stem cells, related reagents, and protocols they require for their research. In addition to repository, cryostorage and distribution functions, RRRC can facilitate acquisition of rat strains from other international repositories as well as provide consultation and technical training to investigators using rat models.

Proper citation: Rat Resource and Research Center (RRID:SCR_002044) Copy   


  • RRID:SCR_002067

    This resource has 1+ mentions.

http://biodev.extra.cea.fr/interoporc/

Automatic prediction tool to infer protein-protein interaction networks, it is applicable for lots of species using orthology and known interactions. The interoPORC method is based on the interolog concept and combines source interaction datasets from public databases as well as clusters of orthologous proteins (PORC) available on Integr8. Users can use this page to ask InteroPorc for all species present in Integr8. Some results are already computed and users can run InteroPorc to investigate any other species. Currently, the following databases are processed and merged (with datetime of the last available public release for each database used): IntAct, MINT, DIP, and Integr8.

Proper citation: InteroPorc (RRID:SCR_002067) Copy   


  • RRID:SCR_000824

    This resource has 10+ mentions.

https://monarchinitiative.org/

Repository of information about model organisms, in vitro models, genes, pathways, gene expression, protein and genetic interactions, orthology, disease, phenotypes, publications, and authors, and ability to navigate multi-scale spatial and temporal phenotypes across in vivo and in vitro model systems in context of genetic and genomic data, using semantics and statistics. Discovery system provides basic and clinical science researchers, informaticists, and medical professionals with integrated interface and set of discovery tools to reveal genetic basis of disease, facilitate hypothesis generation, and identify novel candidate drug targets. Database that indexes authoritative information on experimental models of disease from MGI, RGD and ZFIN.

Proper citation: MONARCH Initiative (RRID:SCR_000824) Copy   


http://www.jhu.edu/lschramm/spinalindex.htm

Serial histological sections of rat spinal cord at the lumbar and thoracic levels. Serial sections of rat spinal cord cut in the horizontal and sagittal planes. Also transverse and sagittal section series of the postnatal thoracic spinal cord immunolabeled for SMI-32.

Proper citation: Schramm Lab Spinal Cord Atlases (RRID:SCR_003265) Copy   


http://scicrunch.org/resources

Portal providing identifiers for Antibodies, Model Organisms, and Tools (software, databases, services) created in support of the Resource Identification Initiative, which aims to promote research resource identification, discovery, and reuse. The portal offers a central location for obtaining and exploring Research Resource Identifiers (RRIDs) - persistent and unique identifiers for referencing a research resource. A critical goal of the RII is the widespread adoption of RRIDs to cite resources in the biomedical literature and other places that reference their generation or use. RRIDs use established community identifiers where they exist, and are cross-referenced in their system where more than one identifier exists for a single resource.

Proper citation: Resource Identification Portal (RRID:SCR_004098) Copy   


http://www.webgestalt.org/

Web based gene set analysis toolkit designed for functional genomic, proteomic, and large-scale genetic studies from which large number of gene lists (e.g. differentially expressed gene sets, co-expressed gene sets etc) are continuously generated. WebGestalt incorporates information from different public resources and provides a way for biologists to make sense out of gene lists. This version of WebGestalt supports eight organisms, including human, mouse, rat, worm, fly, yeast, dog, and zebrafish.

Proper citation: WebGestalt: WEB-based GEne SeT AnaLysis Toolkit (RRID:SCR_006786) Copy   


  • RRID:SCR_006677

    This resource has 10+ mentions.

https://madb.nci.nih.gov/

Microarray data management and analysis system for NCI / Center for Cancer Research scientists / collaborators. Data is secured and backed up on a regular basis, and investigators can authorize levels of access privileges to their projects, allowing data privacy while still enabling data sharing with collaborators.

Proper citation: mAdb (RRID:SCR_006677) Copy   


  • RRID:SCR_006997

    This resource has 1000+ mentions.

http://www.microrna.org

Database of microRNA target predictions and expression profiles. Target predictions are based on a development of the miRanda algorithm which incorporates current biological knowledge on target rules and on the use of an up-to-date compendium of mammalian microRNAs. MicroRNA expression profiles are derived from a comprehensive sequencing project of a large set of mammalian tissues and cell lines of normal and disease origin. This website enables users to explore: * The set of genes that are potentially regulated by a particular microRNA. * The implied cooperativity of multiple microRNAs on a particular mRNA. * MicroRNA expression profiles in various mammalian tissues. The web resource provides users with functional information about the growing number of microRNAs and their interaction with target genes in many species and facilitates novel discoveries in microRNA gene regulation. The microRNA Target Detection Software, miRanda, is an algorithm for finding genomic targets for microRNAs. This algorithm has been written in C and is available as an open-source method under the GPL., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: microRNA.org (RRID:SCR_006997) Copy   


  • RRID:SCR_006878

    This resource has 50+ mentions.

http://brainmaps.org

An interactive multiresolution brain atlas that is based on over 20 million megapixels of sub-micron resolution, annotated, scanned images of serial sections of both primate and non-primate brains and integrated with a high-speed database for querying and retrieving data about brain structure and function. Currently featured are complete brain atlas datasets for various species, including Macaca mulatta, Chlorocebus aethiops, Felis catus, Mus musculus, Rattus norvegicus, Tyto alba and many other vertebrates. BrainMaps is currently accepting histochemical, immunocytochemical, and tracer connectivity data, preferably whole-brain. In addition, they are interested in EM, MRI, and DTI data.

Proper citation: BrainMaps.org (RRID:SCR_006878) Copy   


http://profiles.utsouthwestern.edu/profile/18453/franklin-hamra.html

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 18,2023. Stock center of Knockout and Transgenic Rats at UT Southwestern in Dallas.

Proper citation: Sperm Stem Cell Libraries for Biological Research (RRID:SCR_014189) Copy   


  • RRID:SCR_014309

    This resource has 500+ mentions.

http://actimetrics.com/products/clocklab/

Point and click program used to quickly analyse circadian activity data using algorithms and embedded controls to make every graph interactive and useful for data analysis. The analysis program has been used for a variety of species including mice, hamsters, rats, sheep, Drosophila, and humans. This program has three separate applications: one for data collection, one for analysis, and a chamber control program.

Proper citation: Clocklab (RRID:SCR_014309) Copy   


http://rgd.mcw.edu/rgdCuration/?module=portal&func=show&name=nuro

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 12,2023. Portal that provides researchers with easy access to data on rat genes, QTLs, strain models, biological processes and pathways related to neurological diseases. This resource also includes dynamic data analysis tools.

Proper citation: Rat Genome Database: Neurological Disease Portal (RRID:SCR_008685) Copy   


  • RRID:SCR_008860

    This resource has 1+ mentions.

http://edwardslab.bmcb.georgetown.edu/

The Edwards lab conducts research in various aspects of computational biology and bioinformatics, particularly proteomics and mass spectrometry informatics and DNA and protein based signatures for pathogen detection. Some tools provided by Edwards Lab are the PepArML Meta-Search Engine, PeptideMapper Web-Service, Peptide Sequence Databases, Rapid Microorganism Identification Database (RMIDb), and GlycoPeptideSearch. Our primary area of research is the analysis of mass spectrometry experiments for proteomics. Proteomics, the qualitative and quantitative analysis of the expressed proteins of a cell, makes it possible to detect and compare the protein abundance profiles of different samples. Proteins observed to be under or over expressed in disease samples can lead to diagnostic markers or drug targets. The observation of mutated or alternatively spliced protein isoforms may provide domain experts with clues to the mechanisms by which a disease operates. The detection of proteins by mass spectrometry can even signal the presence of airborne microorganisms, such as anthrax, in the detect-to-protect time-frame. Recent research has focused on the discovery of novel peptides in proteomics datasets, improving the sensitivity and specificity of peptide identification using spectral matching with hidden Markov models, and unsupervised machine-learning based peptide identification result combining. Outside of proteomics, we work on computational tools for the design of highly specific oligonucleotides useful for pathogen signatures and PCR assay design. Recent research has focused on precomputing all human oligos of length 20 that are unique up to 4 string edits; and all bacterial 20-mer oligos that are species specific up to 4 string edits.

Proper citation: Edwards Lab (RRID:SCR_008860) Copy   


http://akt.ucsf.edu/EGAN/

Exploratory Gene Association Networks (EGAN) is a software tool that allows a bench biologist to visualize and interpret the results of high-throughput exploratory assays in an interactive hypergraph of genes, relationships (protein-protein interactions, literature co-occurrence, etc.) and meta-data (annotation, signaling pathways, etc.). EGAN provides comprehensive, automated calculation of meta-data coincidence (over-representation, enrichment) for user- and assay-defined gene lists, and provides direct links to web resources and literature (NCBI Entrez Gene, PubMed, KEGG, Gene Ontology, iHOP, Google, etc.). EGAN functions as a module for exploratory investigation of analysis results from multiple high-throughput assay technologies, including but not limited to: * Transcriptomics via expression microarrays or RNA-Seq * Genomics via SNP GWAS or array CGH * Proteomics via MS/MS peptide identifications * Epigenomics via DNA methylation, ChIP-on-Chip or ChIP-Seq * In-silico analysis of sequences or literature EGAN has been built using Cytoscape libraries for graph visualization and layout, and is comparable to DAVID, GSEA, Ingenuity IPA and Ariadne Pathway Studio. There are pre-collated EGAN networks available for human (Homo sapiens), mouse (Mus musculus), rat (Rattus norvegicus), chicken (Gallus gallus), zebrafish (Danio rerio), fruit fly (Drosophila melanogaster), nematode (Caenorhabditis elegans), mouse-ear cress (Arabidopsis thaliana), rice (Oryza sativa) and brewer's yeast (Saccharomyces cerevisiae). There is now an EGAN module available for GenePattern (human-only). Platform: Windows compatible, Mac OS X compatible, Linux compatible

Proper citation: EGAN: Exploratory Gene Association Networks (RRID:SCR_008856) Copy   


  • RRID:SCR_005083

    This resource has 1+ mentions.

http://krasnow1.gmu.edu/cn3/hippocampus3d/

Data files for a high resolution three dimensional (3D) structure of the rat hippocampus reconstructed from histological sections. The data files (supplementary data for Ropireddy et al., Neurosci., 2012 Mar 15;205:91-111) are being shared on the Windows Live cloud space provided by Microsoft. Downloadable data files include the Nissl histological images, the hippocampus layer tracings that can be visualized alone or superimposed to the corresponding Nissl images, the voxel database coordinates, and the surface rendering VRML files. * Hippocampus Nissl Images: The high resolution histological Nissl images obtained at 16 micrometer inter-slice distance for the Long-Evans rat hippocampus can be downloaded or directly viewed in a browser. This dataset consists of 230 jpeg images that cover the hippocampus from rostral to caudal poles. This image dataset is uploaded in seven parts as rar files. * Hippocampus Layer Tracings: The seven hippocampus layers ''ML, ''GC'', ''HILUS'' in DG and ''LM'', ''RAD'', ''PC'', ''OR'' in CA were segmented (traced) using the Reconstruct tool which can be downloaded from Synapse web. This tool outputs all the tracings for each image in XML format. The XML tracing files for all these seven layers for each of the above Nissl images are zipped into one file and can be downloaded. * Hippocampus VoxelDB: The 3D hippocampus reconstructed is volumetrically transformed into 16 micrometer sized voxels for all the seven layers. Each voxel is reported according to multiple coordinate systems, namely in Cartesian, along the natural hippocampal dimensions, and in reference to the canonical brain planes. The voxel database file is created in ascii format. The single voxel database file was split into three rar archive files. Please note that the three rar archive files should be downloaded and decompressed in a single directory in order to obtain the single voxel data file (Hippocampus-VoxelDB.txt). * 3D Surface Renderings: This is a rar archive file with a single VRML file containing the surface rendering of DG and CA layers. This VRML file can be opened and visualized in any VRML viewer, e.g. the open source software view3dscene. * 3D Hippocampus Movie: This movie contains visualization of the 3D surface renderings of CA (blue) and DG (red) inner and outer boundaries; neuronal embeddings of DG granule and CA pyramidal dendritic arbors; potential synapses between CA3b interneuron axon and pyramidal dendrite, and between CA2 pyramidal axon and CA pyramidal dendrites.

Proper citation: Hippocampus 3D Model (RRID:SCR_005083) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X