Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 26, 2016. Search engine that integrates over 100 curated and publicly contributed data sources and provides integrated views on the genomic, proteomic, transcriptomic, genetic and functional information currently available. Information featured in the database includes gene function, orthologies, gene expression, pathways and protein-protein interactions, mutations and SNPs, disease relationships, related drugs and compounds.
Proper citation: IntegromeDB (RRID:SCR_004620) Copy
A curated database that provides comprehensive integrated biological information for Saccharomyces cerevisiae along with search and analysis tools to explore these data. SGD allows researchers to discover functional relationships between sequence and gene products in fungi and higher organisms. The SGD also maintains the S. cerevisiae Gene Name Registry, a complete list of all gene names used in S. cerevisiae which includes a set of general guidelines to gene naming. Protein Page provides basic protein information calculated from the predicted sequence and contains links to a variety of secondary structure and tertiary structure resources. Yeast Biochemical Pathways allows users to view and search for biochemical reactions and pathways that occur in S. cerevisiae as well as map expression data onto the biochemical pathways. Literature citations are provided where available.
Proper citation: SGD (RRID:SCR_004694) Copy
http://exon.cshl.org/cgi-bin/atprobe/atprobe.pl
Arabidopsis thaliana promoter binding element database that focuses on specific binding elements on known genes, found with experimental methods.
Proper citation: AtProbe (RRID:SCR_005412) Copy
http://www.dbs.ifi.lmu.de/~bundschu/LHGDN.html
A text mining derived database with focus on extracting and classifying gene-disease associations with respect to several biomolecular conditions. It uses a machine learning based algorithm to extract semantic gene-disease relations from a textual source of interest. The semantic gene-disease relations were extracted with F-measures of 78. More specifically, the textual source utilized here originates from Entrez Gene''''s GeneRIF (Gene Reference Into Function) database (Mitchell, et al., 2003). LHGDN was created based on a GeneRIF version from March 31st, 2009, consisting of 414241 phrases. These phrases were further restricted to the organism Homo sapiens, which resulted in a total of 178004 phrases. We benchmark our approach on two different tasks. The first task is the identification of semantic relations between diseases and treatments. The available data set consists of manually annotated PubMed abstracts. The second task is the identification of relations between genes and diseases from a set of concise phrases, so-called GeneRIF (Gene Reference Into Function) phrases. In our experimental setting, we do not assume that the entities are given, as is often the case in previous relation extraction work. Rather the extraction of the entities is solved as a subproblem. Compared with other state-of-the-art approaches, we achieve very competitive results on both data sets. To demonstrate the scalability of our solution, we apply our approach to the complete human GeneRIF database. The resulting gene-disease network contains 34758 semantic associations between 4939 genes and 1745 diseases. The gene-disease network is publicly available as a machine-readable RDF graph. We extend the framework of Conditional Random Fields towards the annotation of semantic relations from text and apply it to the biomedical domain. Our approach is based on a rich set of textual features and achieves a performance that is competitive to leading approaches. The model is quite general and can be extended to handle arbitrary biological entities and relation types. The resulting gene-disease network shows that the GeneRIF database provides a rich knowledge source for text mining.
Proper citation: Literature-derived human gene-disease network (RRID:SCR_005653) Copy
A knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.
Proper citation: BiGG Database (RRID:SCR_005809) Copy
Database for identifying orthologous phenotypes (phenologs). Mapping between genotype and phenotype is often non-obvious, complicating prediction of genes underlying specific phenotypes. This problem can be addressed through comparative analyses of phenotypes. We define phenologs based upon overlapping sets of orthologous genes associated with each phenotype. Comparisons of >189,000 human, mouse, yeast, and worm gene-phenotype associations reveal many significant phenologs, including novel non-obvious human disease models. For example, phenologs suggest a yeast model for mammalian angiogenesis defects and an invertebrate model for vertebrate neural tube birth defects. Phenologs thus create a rich framework for comparing mutational phenotypes, identify adaptive reuse of gene systems, and suggest new disease genes. To search for phenologs, go to the basic search page and enter a list of genes in the box provided, using Entrez gene identifiers for mouse/human genes, locus ids for yeast (e.g., YHR200W), or sequence names for worm (e.g., B0205.3). It is expected that this list of genes will all be associated with a particular system, trait, mutational phenotype, or disease. The search will return all identified model organism/human mutational phenotypes that show any overlap with the input set of the genes, ranked according to their hypergeometric probability scores. Clicking on a particular phenolog will result in a list of genes associated with the phenotype, from which potential new candidate genes can identified. Currently known phenotypes in the database are available from the link labeled ''Find phenotypes'', where the associated gene can be submitted as queries, or alternately, can be searched directly from the link provided.
Proper citation: Phenologs (RRID:SCR_005529) Copy
Database of the international consortium working together to mutate all protein-coding genes in the mouse using a combination of gene trapping and gene targeting in C57BL/6 mouse embryonic stem (ES) cells. Detailed information on targeted genes is available. The IKMC includes the following programs: * Knockout Mouse Project (KOMP) (USA) ** CSD, a collaborative team at the Children''''s Hospital Oakland Research Institute (CHORI), the Wellcome Trust Sanger Institute and the University of California at Davis School of Veterinary Medicine , led by Pieter deJong, Ph.D., CHORI, along with K. C. Kent Lloyd, D.V.M., Ph.D., UC Davis; and Allan Bradley, Ph.D. FRS, and William Skarnes, Ph.D., at the Wellcome Trust Sanger Institute. ** Regeneron, a team at the VelociGene division of Regeneron Pharmaceuticals, Inc., led by David Valenzuela, Ph.D. and George D. Yancopoulos, M.D., Ph.D. * European Conditional Mouse Mutagenesis Program (EUCOMM) (Europe) * North American Conditional Mouse Mutagenesis Project (NorCOMM) (Canada) * Texas A&M Institute for Genomic Medicine (TIGM) (USA) Products (vectors, mice, ES cell lines) may be ordered from the above programs.
Proper citation: International Knockout Mouse Consortium (RRID:SCR_005574) Copy
A publicly available database of Transposed elements (TEs) which are located within protein-coding genes of 7 organisms: human, mouse, chicken, zebrafish, fruilt fly, nematode and sea squirt. Using TranspoGene the user can learn about the many aspects of the effect these TEs have on their hosting genes, such as: exonization events (including alternative splicing-related data), insertion of TEs into introns, exons, and promoters, specific location of the TE over the gene, evolutionary divergence of the TE from its consensus sequence and involvement in diseases. TranspoGene database is quickly searchable through its website, enables many kinds of searches and is available for download. TranspoGene contains information regarding specific type and family of the TEs, genomic and mRNA location, sequence, supporting transcript accession and alignment to the TE consensus sequence. The database also contains host gene specific data: gene name, genomic location, Swiss-Prot and RefSeq accessions, diseases associated with the gene and splicing pattern. The TranspoGene and microTranspoGene databases can be used by researchers interested in the effect of TE insertion on the eukaryotic transcriptome.
Proper citation: TranspoGene (RRID:SCR_005634) Copy
http://www.gene-regulation.com/pub/databases.html#transfac
Manually curated database of eukaryotic transcription factors, their genomic binding sites and DNA binding profiles. Used to predict potential transcription factor binding sites.
Proper citation: TRANSFAC (RRID:SCR_005620) Copy
http://www.informatics.jax.org
International database for laboratory mouse. Data offered by The Jackson Laboratory includes information on integrated genetic, genomic, and biological data. MGI creates and maintains integrated representation of mouse genetic, genomic, expression, and phenotype data and develops reference data set and consensus data views, synthesizes comparative genomic data between mouse and other mammals, maintains set of links and collaborations with other bioinformatics resources, develops and supports analysis and data submission tools, and provides technical support for database users. Projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, and MouseCyc Project at MGI.
Proper citation: Mouse Genome Informatics (MGI) (RRID:SCR_006460) Copy
Database and discovery platform containing publicly available collections of genes and variants associated to human diseases. Integrates data from curated repositories, GWAS catalogues, animal models and scientific literature.
Proper citation: DisGeNET (RRID:SCR_006178) Copy
http://www.snpedia.com/index.php/SNPedia
Wiki investigating human genetics including information about the effects of variations in DNA, citing peer-reviewed scientific publications. It is used by Promethease to analyze and help explain your DNA. It is based on a wiki model in order to foster communication about genetic variation and to allow interested community members to help it evolve to become ever more relevant. As the cost of genotyping (and especially of fully determining your own genomic sequence) continues to drop, we''''ll all want to know more - a lot more - about the meaning of these DNA variations and SNPedia will be here to help. SNPedia has been launched to help realize the potential of the Human Genome Project to connect to our daily lives and well-being. For more information see the Wikipedia page, http://en.wikipedia.org/wiki/SNPedia * Download URL: http://www.SNPedia.com/index.php/Bulk * Web Service URL: http://bots.SNPedia.com/api.php
Proper citation: SNPedia (RRID:SCR_006125) Copy
ProPortal is a database containing genomic, metagenomic, transcriptomic and field data for the marine cyanobacterium Prochlorococcus. Our goal is to provide a source of cross-referenced data across multiple scales of biological organization--from the genome to the ecosystem--embracing the full diversity of ecotypic variation within this microbial taxon, its sister group, Synechococcus and phage that infect them. The site currently contains the genomes of 13 Prochlorococcus strains, 11 Synechococcus strains and 28 cyanophage strains that infect one or both groups. Cyanobacterial and cyanophage genes are clustered into orthologous groups that can be accessed by keyword search or through a genome browser. Users can also identify orthologous gene clusters shared by cyanobacterial and cyanophage genomes. Gene expression data for Prochlorococcus ecotypes MED4 and MIT9313 allow users to identify genes that are up or downregulated in response to environmental stressors. In addition, the transcriptome in synchronized cells grown on a 24-h light-dark cycle reveals the choreography of gene expression in cells in a ''natural'' state. Metagenomic sequences from the Global Ocean Survey from Prochlorococcus, Synechococcus and phage genomes are archived so users can examine the differences between populations from diverse habitats. Finally, an example of cyanobacterial population data from the field is included.
Proper citation: ProPortal (RRID:SCR_006112) Copy
http://stemcelldb.nih.gov/public.do
Database characterizing and comparing pluripotent human stem cells. The growth and culture conditions of all 21 human embryonic stem cell lines approved under the August 2001 Presidential Executive Order have been analyzed. Available to the scientific community are the results of our rigorous characterization of these cell lines at a more advanced level.
Proper citation: StemCellDB (RRID:SCR_006305) Copy
http://research.nhgri.nih.gov/CGD/
Manually curated database of all conditions with known genetic causes, focusing on medically significant genetic data with available interventions. Includes gene symbol, conditions, allelic conditions, inheritance, age in which interventions are indicated, clinical categorization, and general description of interventions/rationale. Contents are intended to describe types of interventions that might be considered. Includes only single gene alterations and does not include genetic associations or susceptibility factors related to more complex diseases.
Proper citation: Clinical Genomic Database (RRID:SCR_006427) Copy
http://igdb.nsclc.ibms.sinica.edu.tw/
IGDB.NSCLC database is aiming to facilitate and prioritize identified lung cancer genes and microRNAs for pathological and mechanistic studies of lung tumorigenesis and for developing new strategies for clinical interventions. We integrated and curated various lung cancer genomic datasets to present # lung cancer genes with somatic mutations, experimental supports and statistic significance in association with clinicopathological features; # genomic alterations with copy number alterations (CNA) detected by high density SNP arrays, gain or loss regions detected by arrayed comparative genome hybridization (aCGH), and loss of heterozygosity (LOH) detected by microsatellite markers; # aberrant expression of genes and microRNAs detected by various microarrays. IGDB.NSCLC database provides user friendly interfaces and searching functions to display multiple layers of evidence for detecting lung cancer target genes and microRNAs, especially emphasizing on concordant alterations: # genes with altered expression located in the CNA regions; # microRNAs with altered expression located in the CNA regions; # somatic mutation genes located in the CNA regions; and # genes associated with clinicopathological features located in the CNA regions. These concordant altered genes and miRNAs should be prioritized for further basic and clinical studies.
Proper citation: IGDB.NSCLC (RRID:SCR_006048) Copy
Describes phenotype relationships with between breeds and genes. Catalogue/compendium of inherited disorders, other (single-locus) traits, and genes in 245 animal species. Database of genes, inherited disorders and traits in animal species other than human, mouse, and rats. Database contains textual information and references, as well as links to relevant records from OMIM, PubMed and Gene.
Proper citation: OMIA - Online Mendelian Inheritance in Animals (RRID:SCR_006436) Copy
http://www.ncbi.nlm.nih.gov/CCDS/
Database (anonymous FTP) resulting from a collaborative effort to identify a core set of human and mouse protein coding regions that are consistently annotated and of high quality. The long term goal is to support convergence towards a standard set of gene annotations. Collaborators are EBI, NCBI, UCSC, WTSI and the initial results are also available from the participants'''' genome browser Web sites. In addition, CCDS identifiers are indicated on the relevant NCBI RefSeq and Entrez Gene records and in Map Viewer displays of RNA (RefSeq) and Gene annotations on the reference assembly.
Proper citation: Consensus CDS (RRID:SCR_006729) Copy
http://epgd.biosino.org/SysZNF/
THIS RESOURCE IS NO LONGER IN SERVICE, documented September 2, 2016. SysZNF is an information resource for C2H2 Zinc Finger genes in humans and mice. C2H2 Zinc Finger genes (C2H2-ZNF) constitute the largest class of transcription factors in humans and mouse. C2H2 zinc finger proteins primarily bind to DNA. In most cases, they attach to regions near certain genes and turn the genes on and off as needed. The researches on these genes show light on the evolution of gene regulation systems and development. Therefore, we develop SysZNF (Systematical information resource of Zinc Finger genes) to collect the information related to C2H2 Zinc Finger genes. The aim of SysZNF was to provide a user-friendly interface for rendering the information (DNA, Expression, Protein, Reference and so on) of each C2H2-ZNF (e.g., ZNF10) and to enable a comprehensive analysis of C2H2-ZNF. This project was supported by the Proteome-Center at Rostock University (PCRU) who conceives the concept of the database and Key laboratory of Systems biology at the Shanghai Institute for Biological Sciences (SIBS) who implemented the database. It is maintained jointly by PCRU and SIBS.
Proper citation: SysZNF - C2H2 Zinc Finger genes (RRID:SCR_007056) Copy
Database devoted to protein domains. It is also a collection of tools for the investigation of the relationships between protein sequences and motifs described on them.
Proper citation: MyHits (RRID:SCR_006757) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.