Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 out of 970 results
Snippet view Table view Download 970 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_001728

    This resource has 1+ mentions.

http://www.farsight-toolkit.org/wiki/FARSIGHT_Toolkit

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23, 2022. A collection of software modules for image data handling, pre-processing, segmentation, inspection, editing, post-processing, and secondary analysis. These modules can be scripted to accomplish a variety of automated image analysis tasks. All of the modules are written in accordance with software practices of the Insight Toolkit Community. Importantly, all modules are accessible through the Python scripting language which allows users to create scripts to accomplish sophisticated associative image analysis tasks over multi-dimensional microscopy image data. This language works on most computing platforms, providing a high degree of platform independence. Another important design principle is the use of standardized XML file formats for data interchange between modules.

Proper citation: Farsight Toolkit (RRID:SCR_001728) Copy   


http://dial.mc.duke.edu/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. The Duke Image Analysis Laboratory (DIAL) is committed to providing comprehensive imaging support in research studies and clinical trials to various agencies. The capabilities of the lab include protocol development, site training and certification, and image archival and analysis for a variety of modalities including magnetic resonance imaging, magnetic resonance spectroscopy, computed tomography and nuclear medicine. DIAL uses the latest technologies to analyze Magnetic Resonance Imaging (MRI) data sets of the brain. Currently the lab is engaged in measurement of the hippocampus, amygdala, caudate, ventricular system, and other brain regional volumes. Each of these techniques have undergone a rigorous validation process. The measurements of brain structures provide a useful means of non-invasively testing for changes in the brain of the patient. Changes over time in the brain can be detected, and evaluated with respect to the treatment that the patient is receiving. Magnetic Resonance Spectroscopy (MRS) allows DIAL to obtain an accurate profile of the chemical content of the brain. This sensitive technique can detect small changes in the metabolic state of the brain; changes that vary in response to administration of therapeutic agents. The ability to detect these subtle shifts in brain chemistry allows DIAL to identify changes in the brain with more sensitivity than allowed by image analysis. In this respect, NMR spectroscopy can provide early detection of changes in the brain, and serves to compliment the data obtained from image analysis. Additionally, DIAL also contains SQUID (Scalable Query Utility and Image Database). It is an image management system developed to facilitate image management in research and clinical trials: SQUID offers secure, redundant image storage and organizational functions for sorting and searching digital images for a variety of modalities including MRI, MRS, CAT Scan, X-Ray and Nuclear Medicine. SQUID can access images directly from DUMC scanners. Data can also be loaded via DICOM CDs, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Duke University Medical Center: Duke Image Analysis Laboratory (RRID:SCR_001716) Copy   


  • RRID:SCR_001808

    This resource has 10+ mentions.

http://www.nesys.uio.no/Atlas3D/

A multi-platform visualization tool which allows import and visualization of 3-D atlas structures in combination with tomographic and histological image data. The tool allows visualization and analysis of the reconstructed atlas framework, surface modeling and rotation of selected structures, user-defined slicing at any chosen angle, and import of data produced by the user for merging with the atlas framework. Tomographic image data in NIfTI (Neuroimaging Informatics Technology Initiative) file format, VRML and PNG files can be imported and visualized within the atlas framework. XYZ coordinate lists are also supported. Atlases that are available with the tool include mouse brain structures (3-D reconstructed from The Mouse Brain in Stereotaxic Coordinates by Paxinos and Franklin (2001)) and rat brain structures (3-D reconstructed from The Rat Brain in Stereotaxic Coordinates by Paxinos and Watson (2005)). Experimental data can be imported in Atlas3D and warped to atlas space, using manual linear registration, with the possibility to scale, rotate, and position the imported data. This facilitates assignment of location and comparative analysis of signal location in tomographic images.

Proper citation: Atlas3D (RRID:SCR_001808) Copy   


http://ilyinlab.org/friend/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. Friend is a bioinformatics application designed for simultaneous analysis and visualization of multiple structures and sequences of proteins and/or DNA/RNA. The application provides basic functionalities such as: structure visualization with different rendering and coloring, sequence alignment, and simple phylogeny analysis, along with a number of extended features to perform more complex analyses of sequence structure relationships, including: structural alignment of proteins, investigation of specific interaction motifs, studies of protein-protein and protein-DNA interactions, and protein super-families. Friend is also useful for the functional annotation of proteins, protein modeling, and protein folding studies. Friend provides three levels of usage; 1) an extensive GUI for a scientist with no programming experience, 2) a command line interface for scripting for a scientist with some programming experience, and 3) the ability to extend Friend with user written libraries for an experienced programmer. The application is linked and communicates with local and remote sequence and structure databases.

Proper citation: An Integrated Multiple Structure Visualization and Multiple Sequence Alignment Application (RRID:SCR_001646) Copy   


http://icahn.mssm.edu/research/resources/shared-resource-facilities/in-vivo-molecular-imaging

The In-Vivo Molecular Imaging Laboratory (IMIL) is a MSSM shared resource facility serving the research community of Mount Sinai with equipment and imaging expertise. State-of-the-art bioluminescent as well as fluorescent imaging modalities are supported for in-vivo monitoring of cellular and genetic activity. Investigators are provided with cutting edge imaging technologies as well as analysis techniques. The long-term goal is to establish a comprehensive SRF for in-vivo molecular imaging using micro-MRI, micro-PET and other modalities. IMIL houses a Xenogen IVIS-200 Series imaging system with the integrated fluorescent imaging options. Simultaneous dual reporter in-vivo imaging is possible with bioluminescence and fluorescence probes. The imaging chamber has a gas anesthesia manifold that can accommodate up to 5 mice for simultaneously image acquisition. Selectable field of views allow in-plane (X,Y) imaging resolutions of up to 60-microm. Integrated spectra filters allow for the determination of signal source depth (Z). IMIL will provide data acquisition services as well as analysis. IMIL has a dedicated imaging technologist for data acquisition. Investigators will bring their prepared animal to the lab and an IMIL imaging technologist will assist in sedating the animals and acquire imaging data. Typical imaging sessions last about an hour. Certified users who are trained in the use of the software will be able to perform their own analysis at the console. Usage of the imaging device is charged by the hour ($100/hour). Structural Imaging The IVIS-200 has the built-in capability of obtaining an image of the surface topography of the animal for 2D and 3D localization. If additional true 3D imaging data is required, micro MRI is available through the Imaging Science Laboratories (ISL). Image Analysis The IVIS-200 has an integrated image acquisition and analysis software (Living Image Software 2.50). Comprehensive data quantification is possible with this software. Raw data as well as analyzed results can be electronically transferred to the investigators. Support is also available for additional image analysis such as intermodality coregistration, 3D rendering, and group statistics. Additional software packages include MedX, SPM, Brainvoyager, Analyze, and in-house developed software.

Proper citation: Mount Sinai School of Medicine: In-Vivo Molecular Imaging Laboratory (RRID:SCR_001785) Copy   


http://meme-suite.org/

Suite of motif-based sequence analysis tools to discover motifs using MEME, DREME (DNA only) or GLAM2 on groups of related DNA or protein sequences; search sequence databases with motifs using MAST, FIMO, MCAST or GLAM2SCAN; compare a motif to all motifs in a database of motifs; associate motifs with Gene Ontology terms via their putative target genes, and analyze motif enrichment using SpaMo or CentriMo. Source code, binaries and a web server are freely available for noncommercial use.

Proper citation: MEME Suite - Motif-based sequence analysis tools (RRID:SCR_001783) Copy   


http://www.nesys.uio.no/Micro3D/

The Micro3D 2004 is a software for 3-D reconstruction, visualization, and analysis of neuronal populations and brain regions. Micro3D generates geometric models from line and point coded data sets, representing labeled objects such as cell bodies or axonal plexuses, and boundaries of brain regions in serial sections. Data are typically imported from image-combining computerized microscopy systems, such as Neurolucida (MicroBrightField, Colchester, VT). The models may be rotated and zoomed in real-time. Surfaces are re-synthesized on the basis of stacks of contour lines. Clipping is used for defining section-independent subdivisions of the model. Flattening of sheets of points in curved layers (e.g., neurons in a cortical lamina) facilitates inspection of complicated distribution patterns. Micro3D computes color-coded density maps, and allows production of mpeg videos. Micro3D 2004 runs on LINUX PCs equipped with Open Inventor. It performs operations similar to the Silicon Graphics based version that has been used in more than 25 investigations and in various species, ranging from insects to monkeys, at the LM- and EM-level. Sponsors:Micro 3D was developed with support from The Research Council of Norway and The Oslo Research Park / FORNY.

Proper citation: Neural Systems and Graphics Computing Laboratory: Micro3D Software (RRID:SCR_001811) Copy   


https://github.com/ABCD-STUDY/DEAP

Web service for data exploration and analysis of the ABCD Study - the largest long-term study of brain development and child health in the United States.

Proper citation: DEAP - Data Exploration and Analysis Portal (RRID:SCR_016158) Copy   


  • RRID:SCR_016162

    This resource has 1000+ mentions.

http://hyphy.org/

Open source software package for comparative sequence analysis using stochastic evolutionary models. Used for analysis of genetic sequence data in particular the inference of natural selection using techniques in phylogenetics, molecular evolution, and machine learning.

Proper citation: HyPhy (RRID:SCR_016162) Copy   


  • RRID:SCR_016131

    This resource has 500+ mentions.

https://sanger-pathogens.github.io/gubbins/

Software application as an algorithm that iteratively identifies loci containing elevated densities of base substitutions while concurrently constructing a phylogeny based on the putative point mutations outside of these regions. It is used for phylogenetic analysis of genome sequences and generating highly accurate reconstructions under realistic models of short-term bacterial evolution., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Gubbins (RRID:SCR_016131) Copy   


  • RRID:SCR_016020

https://github.com/ABCD-STUDY/eprime-data-clean

Software to convert E-Prime (software tool for psychology computerized experiment design, data collection, and analysis) generated files to CSV files without errors during conversion. The ABCD project is using E-Prime to run behavioral tests.

Proper citation: eprime-data-clean (RRID:SCR_016020) Copy   


  • RRID:SCR_016108

    This resource has 1+ mentions.

https://github.com/dmgroppe/Mass_Univariate_ERP_Toolbox

Software toolkit of Matlab functions for analyzing and visualizing large numbers of t-tests performed on event-related potential data. The toolbox supports within-subject and between-subject t-tests with false discovery rate controls and control of the family-wise error rate via permutation tests.

Proper citation: Mass Univariate ERP Toolbox (RRID:SCR_016108) Copy   


  • RRID:SCR_016128

http://genome.imim.es/software/gfftools/GFF2APLOT.html

Software application to visualize the alignment of two genomic sequences together with their annotations. Used to generate print-quality images for comparative genome sequence analysis.

Proper citation: Gff2aplot (RRID:SCR_016128) Copy   


  • RRID:SCR_016050

    This resource has 10+ mentions.

https://github.com/neurodroid/stimfit

Software for viewing and analyzing electrophysiological data. It features an embedded Python shell that allows you to extend the program functionality by using numerical libraries such as NumPy and SciPy.

Proper citation: Stimfit (RRID:SCR_016050) Copy   


  • RRID:SCR_016170

    This resource has 10+ mentions.

https://www.hiv.lanl.gov/catnap

Analyze a database of HIV-1 IC50 and IC80 neutralization data from publicly-available sources, in conjunction with HIV-1 Envelope sequences. Access to an extensive databases of information about neutralizing antibodies and viruses used in published neutralization studies. Tool interfaces also allow input and analysis of user data. PMID: 26044712, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: CATNAP (RRID:SCR_016170) Copy   


  • RRID:SCR_016189

    This resource has 50+ mentions.

https://www.goldwave.com/goldwave.php

Software that enables users to digitally edit audio files. GoldWave can record, edit, and analyze audio for research-related purposes.

Proper citation: GoldWave (RRID:SCR_016189) Copy   


  • RRID:SCR_016060

    This resource has 100+ mentions.

http://www.xavierdidelot.xtreemhost.com/clonalframe.htm

Software package for the inference of bacterial microevolution using multilocus sequence data. It is used to identify the clonal relationships between the members of a sample, while also estimating the chromosomal position of homologous recombination events that have disrupted the clonal inheritance.

Proper citation: Clonalframe (RRID:SCR_016060) Copy   


  • RRID:SCR_016399

    This resource has 1+ mentions.

https://gotrack.msl.ubc.ca/

Open source web-based system and database that provides access to historical records and trends in the Gene Ontology (GO) and GO annotations (GOA). Used for monitoring changes in the Gene Ontology and their impact on genomic data analysis.

Proper citation: GOTrack (RRID:SCR_016399) Copy   


  • RRID:SCR_016274

    This resource has 100+ mentions.

http://www2.mrc-lmb.cam.ac.uk/relion

Software for determination of cryo-EM structures. It employs an empirical Bayesian approach to refinement of (multiple) 3D reconstructions or 2D class averages in electron cryo-microscopy.

Proper citation: RELION (RRID:SCR_016274) Copy   


  • RRID:SCR_016394

    This resource has 1+ mentions.

http://vensim.com/

Simulation software for improving the performance of real systems. Used for developing, analyzing, and packaging dynamic feedback models.

Proper citation: Vensim (RRID:SCR_016394) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X