Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
BossDB (Brain Observatory Storage Service and Database) is a cloud-based ecosystem for the storage and management of public large-scale volumetric neuroimaging and connectomics datasets. This includes volumetric Electron Microscopy and X-Ray Micro/Nanotomography data with support for multi-channel image data, segmentations, annotations, meshes, and connectomes. BossDB integrates with community resources for data access, processing, visualization, and analysis, and includes an API that enables metadata management, rendering, datatype conversions, and ingest.
Proper citation: Brain Observatory Storage Service and Database (BossDB) (RRID:SCR_017273) Copy
Portal for visualization and analysis of multi omic data in public and private domains. Enables upload, visualization and analysis of scRNA-seq data.
Proper citation: gene Expression Analysis Resource (RRID:SCR_017467) Copy
https://github.com/PriceLab/TReNA
Methods for reconstructing transcriptional regulatory networks.
Proper citation: TReNA (RRID:SCR_017458) Copy
Mindboggle (http://mindboggle.info) is open source software for analyzing the shapes of brain structures from human MRI data. The following publication in PLoS Computational Biology documents and evaluates the software: Klein A, Ghosh SS, Bao FS, Giard J, Hame Y, Stavsky E, Lee N, Rossa B, Reuter M, Neto EC, Keshavan A. (2017) Mindboggling morphometry of human brains. PLoS Computational Biology 13(3): e1005350. doi:10.1371/journal.pcbi.1005350
Proper citation: Mindboggle (RRID:SCR_002438) Copy
A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.
Proper citation: NeuroMab (RRID:SCR_003086) Copy
https://www.nitrc.org/projects/neurolabels
This resource was created to host descriptions of protocols, definitions and rules for the reliable identification and localization of human brain anatomy and discussions of best practices in brain labeling. Project for manual anatomical labeling of human brain MRI data, and the visual presentation of labeled brain images.
Proper citation: BrainColor: Collaborative Open Labeling Online Resource (RRID:SCR_006377) Copy
Induced Pluripotent Stem Cell (iPSC) and Source Cells available for distribution for postnatal-to-adult human control and patient-derived cells and their reprogrammed derivatives in support of stem cell research relevant to mental disorders. This includes but is not limited to anxiety disorders, attention deficit hyperactivity disorder, autism spectrum disorders, bipolar disorder, borderline personality disorder, depression, eating disorders, obsessive-compulsive disorder, panic disorder, post-traumatic stress disorder, and schizophrenia. The capabilities of the repository range from derivation and banking of primary source cells from postnatal through adult human subject tissue to more comprehensive banking and validation of induced pluripotent stem cells (iPSCs) or similar reprogrammed / de-differentiated cells. Please send a message with the Contact page if you wish to contribute source cells or iPSC.
Proper citation: NIMH Stem Cell Center (RRID:SCR_006682) Copy
The SenseLab Project is a long-term effort to build integrated, multidisciplinary models of neurons and neural systems. It was founded in 1993 as part of the original Human Brain Project, which began the development of neuroinformatics tools in support of neuroscience research. It is now part of the Neuroscience Information Framework (NIF) and the International Neuroinformatics Coordinating Facility (INCF). The SenseLab project involves novel informatics approaches to constructing databases and database tools for collecting and analyzing neuroscience information, using the olfactory system as a model, with extension to other brain systems. SenseLab contains seven related databases that support experimental and theoretical research on the membrane properties: CellPropDB, NeuronDB, ModelDB, ORDB, OdorDB, OdorMapDB, BrainPharmA pilot Web portal that successfully integrates multidisciplinary neurocience data.
Proper citation: SenseLab (RRID:SCR_007276) Copy
http://fcon_1000.projects.nitrc.org/indi/pro/nyu.html
Datasets including a collection of scans from 49 psychiatrically evaluated neurotypical adults, ranging in age from 6 to 55 years old, with age, gender and intelligence quotient (IQ) information provided. Future releases will include more comprehensive phenotypic information, and child and adolescent datasets, as well as individuals from clinical populations. The following data are released for every participant: * At least one 6-minute resting state fMRI scan (R-fMRI) * * One high-resolution T1-weighted mprage, defaced to protect patient confidentiality * Two 64-direction diffusion tensor imaging scans * Demographic information (age, gender) and IQ-measures (Verbal, Performance, and Composite; Weschler Abbreviated Scale of Intelligence - WASI) * Most participants have 2 R-fMRI scans, collected less than 1 hour apart in the same scanning session. Rest_1 is always collected first.
Proper citation: NYU Institute for Pediatric Neuroscience Sample (RRID:SCR_010458) Copy
http://mialab.mrn.org/data/index.html
An MRI data set that demonstrates the utility of a mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12-71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described, provide a useful baseline for future investigations of brain networks in health and disease.
Proper citation: MIALAB - Resting State Data (RRID:SCR_008914) Copy
A listing of data sets from NIMH-supported clinical trials. Limited Access Datasets are available from numerous NIMH studies. NIMH requires all investigators seeking access to data from NIMH-supported trials held by NIMH to execute and submit as their request the appropriate Data Use Certification pertaining to the trial. The datasets distributed by NIMH are referred to as limited access datasets because access is limited to qualified researchers who complete Data Use Certifications.
Proper citation: Limited Access Datasets From NIMH Clinical Trials (RRID:SCR_005614) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. A private repository of clinical and genetic information on families with autism. Genetic and clinical data are obtained from families that have more than one family member diagnosed with an Autism Spectrum Disorder. The biological samples, along with the accompanying clinical data, are made available to AGRE-approved researchers worldwide. As they become available, additional family pedigrees will be posted in the online catalog. Cell lines have been established for the majority of families in this collection and serum/plasma is available on a subset of the subjects until stocks are depleted. The diagnosis of autism has been made using the standard Autism Diagnostic Interview-Revised (ADI-R) algorithm and the Autism Diagnostic Observation Scale (ADOS-G). Detailed birth and medical histories (including basic dysmorphology assessments) on children as well as family and medical information for parents and unaffected siblings, are available for nearly all families. DNA, cell lines, serum, plasma and clinical information are made available to AGRE-approved researchers for analysis.
Proper citation: Autism Genetic Resource Exchange (RRID:SCR_004403) Copy
http://surfer.nmr.mgh.harvard.edu/fswiki/Tracula
Software tool developed for automatically reconstructing a set of major white matter pathways in the brain from diffusion weighted images using probabilistic tractography. This method utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual intervention with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. The trac-all script is used to preprocess raw diffusion data (correcting for eddy current distortion and B0 field inhomogenities), register them to common spaces, model and reconstruct major white matter pathways (included in the atlas) without any manual intervention. trac-all may be used to execute all the above steps or parts of it depending on the dataset and user''''s preference for analyzing diffusion data. Alternatively, scripts exist to execute chunks of each processing pipeline, and individual commands may be run to execute a single processing step. To explore all the options in running trac-all please refer to the trac-all wiki. In order to use this script to reconstruct tracts in Diffusion images, all the subjects in the dataset must have Freesurfer Recons.
Proper citation: TRACULA (RRID:SCR_013152) Copy
http://www.nitrc.org/projects/caworks
A software application developed to support computational anatomy and shape analysis. The capabilities of CAWorks include: interactive landmark placement to create segmentation (mask) of desired region of interest; specialized landmark placement plugins for subcortical structures such as hippocampus and amygdala; support for multiple Medical Imaging data formats, such as Nifti, Analyze, Freesurfer, DICOM and landmark data; Quadra Planar view visualization; and shape analysis plugin modules, such as Large Deformation Diffeomorphic Metric Mapping (LDDMM). Specific plugins are available for landmark placement of the hippocampus, amygdala and entorhinal cortex regions, as well as a browser plugin module for the Extensible Neuroimaging Archive Toolkit.
Proper citation: CAWorks (RRID:SCR_014185) Copy
http://becs.aalto.fi/en/research/bayes/drifter/
Model based Bayesian method for eliminating physiological noise from fMRI data. This algorithm uses image voxel analysis to isolate the cardiac and respiratory noise from the relevant data.
Proper citation: DRIFTER (RRID:SCR_014937) Copy
https://community.brain-map.org/t/allen-human-reference-atlas-3d-2020-new/405
Parcellation of adult human brain in 3D, labeling every voxel with brain structure spanning 141 structures. These parcellations were drawn and adapted from prior 2D version of adult human brain atlas.
Proper citation: Allen Human Reference Atlas, 3D, 2020 (RRID:SCR_017764) Copy
https://github.com/kstreet13/slingshot
Software R package for identifying and characterizing continuous developmental trajectories in single cell data. Cell lineage and pseudotime inference for single-cell transcriptomics.
Proper citation: Slingshot (RRID:SCR_017012) Copy
https://openwetware.org/wiki/HughesLab:JTK_Cycle
Software R package for Detecting Rhythmic Components in Genome-Scale Data Sets. Non-parametric algorithm to identify rhythmic components in large datasets. Identifies and characterizes cycling variables in large datasets.
Proper citation: JTK_CYCLE (RRID:SCR_017962) Copy
https://cloudreg.neurodata.io/
Software automated, terascale, cloud based image analysis pipeline for preprocessing and cross modal, nonlinear registration between volumetric datasets with artifacts. Automatic terabyte scale cross modal brain volume registration.
Proper citation: CloudReg (RRID:SCR_022795) Copy
http://fcon_1000.projects.nitrc.org/indi/abide/
Resting state functional magnetic resonance imaging (R-fMRI) datasets from 539 individuals with autism spectrum disorder (ASD) and 573 typical controls. This initiative involved 16 international sites, sharing 20 samples yielding 1112 datasets composed of both MRI data and an extensive array of phenotypic information common across nearly all sites. This effort is expected to facilitate discovery science and comparisons across samples. All datasets are anonymous, with no protected health information included.
Proper citation: ABIDE (RRID:SCR_003612) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.