Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 out of 293 results
Snippet view Table view Download 293 Result(s)
Click the to add this resource to a Collection

http://www.rcsb.org/#Category-welcome

Collection of structural data of biological macromolecules. Database of information about 3D structures of large biological molecules, including proteins and nucleic acids. Users can perform queries on data and analyze and visualize results.

Proper citation: Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) (RRID:SCR_012820) Copy   


http://www.nitrc.org/projects/gscca_2013/

Group Sparse Canonical Correlation Analysis is a method designed to study the mutual relationship between two different types of data.

Proper citation: Group Sparse Canonical Correlation Analysis (RRID:SCR_014977) Copy   


http://cerebrovascularportal.org

Portal enables browsing, searching, and analysis of human genetic information linked to cerebrovascular disease and related traits, while protecting the integrity and confidentiality of the underlying data.

Proper citation: Cerebrovascular Disease Knowledge Portal (RRID:SCR_015628) Copy   


http://www.medschool.lsuhsc.edu/neuroscience/

Research center that takes multidisciplinary approach to neuroscience education and research. Research programs on molecular and cellular bases of neural diseases are the center of the innovative educational programs. Primary mission is to foster and conduct science that advances understanding of brain function and diseases that affect nervous system.

Proper citation: Louisiana State University School of Medicine Neurosciences Center (RRID:SCR_006446) Copy   


http://www.ebi.ac.uk/pdbe/emdb/

Repository for electron microscopy density maps of macromolecular complexes and subcellular structures at Protein Data Bank in Europe. Covers techniques, including single-particle analysis, electron tomography, and electron (2D) crystallography.

Proper citation: Electron Microscopy Data Bank at PDBe (MSD-EBI) (RRID:SCR_006506) Copy   


http://grants.nih.gov/grants/oer.htm

OER serves as a vital interface between the NIH and the biomedical research community by guiding investigators through the process of attaining grants funding and helping them understand and navigate through federal policies and procedures. OER supports extramural research by providing policy and guidance to the 24 NIH Institutes and Centers that award grants. Extramural grants account for approximately 84 percent of NIH''s 29 billion budget. These are awarded to investigators throughout the U.S. and abroad. Approximately 10 percent of the NIH budget supports NIH intramural investigators, NIH staff who conduct research.

Proper citation: Office of Extramural Research NIH (RRID:SCR_006547) Copy   


  • RRID:SCR_006553

    This resource has 10+ mentions.

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/

Consortium that puts sequences into a chromosome context and provides the best possible reference assembly for human, mouse, and zebrafish via FTP. Tools to facilitate the curation of genome assemblies based on the sequence overlaps of long, high quality sequences.

Proper citation: Genome Reference Consortium (RRID:SCR_006553) Copy   


http://www.asn-online.org/

Society leading the fight against kidney disease by educating health professionals, sharing new knowledge, advancing research, and advocating the highest quality care for patients. To accomplish its mission, ASN will: # Educate health professionals by increasing the value of ASN education. # Share new knowledge by improving the quality and expanding the reach of ASN''s communications, including maintaining the premier publications in kidney disease. # Promote the highest quality care by serving as the professional organization informing health policy in kidney disease. # Advance patient care and research in kidney disease by strengthening the pipeline of clinicians, researchers, and educators. To accomplish this goal, ASN will: ## Implement a strategy to increase interest in nephrology careers, which includes promoting diversity within the nephrology workforce. ## Help fund travel to ASN educational activities for physicians and researchers training in the field of kidney disease. ## Use the ASN Grants Program to support outstanding research and foster career development. # Continue to bolster the ASN infrastructure, which includes: ## Increasing diversityincluding age and experience, ethnicity, and genderat all levels of the society. ## Providing avenues for helping ASN members facilitate professional exchange. ## Expanding ASN membership. ## Increasing the ASN Council-Designated Endowment Fund (independent of operational budget) to support grants and other priorities

Proper citation: ASN - American Society of Nephrology (RRID:SCR_006709) Copy   


  • RRID:SCR_001473

http://www.sfn.org/SiteObjects/published/0000BDF20016F63800FD712C30FA42DD/1304F8BE908CE526359306C138737F9F/file/NRF%20Contacts.pdf

This resource provides a list of federal program officials in the neurosciences. An informal compendium of names and contact information for nearly 300 research grant and scientific review administrators in 21 organizational units.

Proper citation: NRF Contacts (RRID:SCR_001473) Copy   


  • RRID:SCR_001808

    This resource has 10+ mentions.

http://www.nesys.uio.no/Atlas3D/

A multi-platform visualization tool which allows import and visualization of 3-D atlas structures in combination with tomographic and histological image data. The tool allows visualization and analysis of the reconstructed atlas framework, surface modeling and rotation of selected structures, user-defined slicing at any chosen angle, and import of data produced by the user for merging with the atlas framework. Tomographic image data in NIfTI (Neuroimaging Informatics Technology Initiative) file format, VRML and PNG files can be imported and visualized within the atlas framework. XYZ coordinate lists are also supported. Atlases that are available with the tool include mouse brain structures (3-D reconstructed from The Mouse Brain in Stereotaxic Coordinates by Paxinos and Franklin (2001)) and rat brain structures (3-D reconstructed from The Rat Brain in Stereotaxic Coordinates by Paxinos and Watson (2005)). Experimental data can be imported in Atlas3D and warped to atlas space, using manual linear registration, with the possibility to scale, rotate, and position the imported data. This facilitates assignment of location and comparative analysis of signal location in tomographic images.

Proper citation: Atlas3D (RRID:SCR_001808) Copy   


http://ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 23, 2019.BGMUT was database that provided publicly accessible platform for DNA sequences and curated set of blood mutation information. Data Archive are available at ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive.

Proper citation: Blood Group Antigen Gene Mutation Database (RRID:SCR_002297) Copy   


  • RRID:SCR_004690

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/biosystems/

Database that provides access to biological systems and their component genes, proteins, and small molecules, as well as literature describing those biosystems and other related data throughout Entrez. A biosystem, or biological system, is a group of molecules that interact directly or indirectly, where the grouping is relevant to the characterization of living matter. BioSystem records list and categorize components, such as the genes, proteins, and small molecules involved in a biological system. The companion FLink tool, in turn, allows you to input a list of proteins, genes, or small molecules and retrieve a ranked list of biosystems. A number of databases provide diagrams showing the components and products of biological pathways along with corresponding annotations and links to literature. This database was developed as a complementary project to (1) serve as a centralized repository of data; (2) connect the biosystem records with associated literature, molecular, and chemical data throughout the Entrez system; and (3) facilitate computation on biosystems data. The NCBI BioSystems Database currently contains records from several source databases: KEGG, BioCyc (including its Tier 1 EcoCyc and MetaCyc databases, and its Tier 2 databases), Reactome, the National Cancer Institute's Pathway Interaction Database, WikiPathways, and Gene Ontology (GO). It includes several types of records such as pathways, structural complexes, and functional sets, and is desiged to accomodate other record types, such as diseases, as data become available. Through these collaborations, the BioSystems database facilitates access to, and provides the ability to compute on, a wide range of biosystems data. If you are interested in depositing data into the BioSystems database, please contact them.

Proper citation: NCBI BioSystems Database (RRID:SCR_004690) Copy   


  • RRID:SCR_004964

http://www.proconsortium.org/pro/

An ontological representation of protein-related entities by explicitly defining them and showing the relationships between them. Each PRO term represents a distinct class of entities (including specific modified forms, orthologous isoforms, and protein complexes) ranging from the taxon-neutral to the taxon-specific. The ontology has a meta-structure encompassing three areas: proteins based on evolutionary relatedness (ProEvo); protein forms produced from a given gene locus (ProForm); and protein-containing complexes (ProComp). NOTICE: The PRO ID format has changed from PRO: to PR: (e.g. PRO:000000563 is now PR:000000563).

Proper citation: PR (RRID:SCR_004964) Copy   


http://www.hmpdacc.org/

Common repository for diverse human microbiome datsets and minimum reporting standards for Common Fund Human Microbiome Project.

Proper citation: HMP Data Analysis and Coordination Center (RRID:SCR_004919) Copy   


  • RRID:SCR_005233

    This resource has 1+ mentions.

http://gds.nih.gov/

NIH established expectations for sharing data obtained through NIH-funded genome-wide association studies (GWAS) with the implementation of the GWAS Policy. Information and resources related to the GWAS Policy can be found on this website.

Proper citation: Genomic Datasharing (RRID:SCR_005233) Copy   


http://science.education.nih.gov/home2.nsf/feature/index.htm

The NIH Office of Science Education (OSE) coordinates science education activities at the NIH and develops and sponsors science education projects in house. These programs serve elementary, secondary, and college students and teachers and the public. Activities * Develop curriculum supplements and other educational materials related to medicine and research through collaborations with scientific experts at NIH * Maintain a website as a central source of information about NIH science education resources * Establish national model programs in public science education, such as the NIH Mini-Med School and Science in the Cinema * Promote science education reform as outlined in the National Science Education Standards and related guidelines The OSE was established in 1991 within the Office of Science Policy of the Office of the Director of the National Institutes of Health. The NIH is the world''s foremost biomedical research center and the U.S. federal government''s focal point for such research. It is one of the components of the Department of Health and Human Services (HHS). The Office of Science Education (OSE) plans, develops, and coordinates a comprehensive science education program to strengthen and enhance efforts of the NIH to attract young people to biomedical and behavioral science careers and to improve science literacy in both adults and children. The function of the Office is as follows: (1) develops, supports, and directs new program initiatives at all levels with special emphasis on targeting students in grades kindergarten to 16, their educators and parents, and the general public; (2) advises NIH leadership on science education issues; (3) examines and evaluates research and emerging trends in science education and literacy for policy making; (4) works closely with the NIH extramural, intramural, women''s health, laboratory animal research, and minority program offices on science education special issues and programs to ensure coordination of NIH efforts; (5) works with NIH institutes, centers, and divisions to enhance communication of science education activities; and (6) works cooperatively with other public- and private-sector organizations to develop and coordinate activities.

Proper citation: NIH Office of Science Education (RRID:SCR_005603) Copy   


  • RRID:SCR_005474

    This resource has 1+ mentions.

http://primegens.org/

A Web-based Tool for High-throughput Primer and Probe Design. The program has its different utilities available on its web server. A standalone version is also available. Algorithms: * SSPD - Sequence Specific Primer Design: to design primers for each of the specific sequences given by the user in the query input file against any alternate potential hybridization with any of the sequences given in the database input file. * PSPD - Probe Specific Primer Design: to design primers it selects the gene-specific fragments (probes) to design primer pairs for their PCR amplification. * FSPD Fragment Specific Primer Design: primer design algorithm used when there is a very long query sequence for which multiple primers are required for its amplification. * Check Binding Specificity * Probe Design Only: Probe design algorithm could be used to find sequence-specific probes, which doesn''t show any blast hit against database. Such probe design has been used for targeted sequencing like agilent sure-select technology with next-generation sequencing.

Proper citation: PRIMEGENS (RRID:SCR_005474) Copy   


http://www.esourceresearch.org/

Inside e-Source you will find 20 interactive chapters with authoritative answers to methodological questions on behavioral and social science research. With contributions from a team of international experts, this anthology provides the latest information on addressing emerging challenges in public health. Book contents include: Setting the Scene, Describing How, Explaining Why, What Works, Emerging Issues. Tables, Figures, Exercises and Examples are included. Login for enhanced functionality. Contents: * Appropriate Research Methods * ''Science'' in the Social Sciences * Design Decisions in Research * Theory Development * Social and Behavioral Theories * Sample Surveys * Social Survey Data Collection * Administrative Data Systems * Observational Studies * Qualitative Methods * Conversation Analysis * Software and Qualitative Analysis * Clinical Trials * Cluster Unit Randomized Trials * Ethical Challenges * Multilevel Modeling * Objective Measurement of Subjective Phenomena * Measuring Socioeconomic Status * Evaluating the Quality of Health Care * Patient-Reported Outcomes

Proper citation: e-Source: Behavioral and Social Sciences Research (RRID:SCR_005627) Copy   


http://grants.nih.gov/podcasts/All_About_Grants/index.htm

The Office of Extramural Research (OER) presents conversations with NIH staff members. Designed for investigators, fellows, students, research administrators, and others, we provide insights on grant topics from those who live and breathe the information. In mp3 and updated monthly. Transcripts are also available. So You Wanna... Keep Up with What''''s Hot? Prepare a Successful Grant Application? Suggest a Topic? Understand How Your Grant is Reviewed? Be an NIH Investigator?

Proper citation: All About Grants Podcast (RRID:SCR_005621) Copy   


  • RRID:SCR_005619

    This resource has 1000+ mentions.

http://slicer.org/

A free, open source software package for visualization and image analysis including registration, segmentation, and quantification of medical image data. Slicer provides a graphical user interface to a powerful set of tools so they can be used by end-user clinicians and researchers alike. 3D Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac Os X. Slicer is based on VTK (http://public.kitware.com/vtk) and has a modular architecture for easy addition of new functionality. It uses an XML-based file format called MRML - Medical Reality Markup Language which can be used as an interchange format among medical imaging applications. Slicer is primarily written in C++ and Tcl.

Proper citation: 3D Slicer (RRID:SCR_005619) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X