Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Database and information retrieval, analysis, and visualization system for microbial resources to help culture collections to manage, disseminate and share the information related to their holdings. Provides an interface for the scientific and industrial communities to access the microbial resource information.
Proper citation: Global Catalogue of Microorganisms (RRID:SCR_016460) Copy
Collection of curated papillomavirus genomic sequences, accompanied by web-based sequence analysis tools. Database and web applications support the storage, annotation, analysis, and exchange of information.
Proper citation: PaVE (RRID:SCR_016599) Copy
http://www.molecularevolution.org/software/genomics/velvet
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software package as de novo genomic assembler for short read sequencing technologies using de Bruijn graphs. Takes in short read sequences, removes errors, then produces high quality unique contigs, retrieves repeated areas between contigs. Can leverage very short reads in combination with read pairs to produce useful assemblies. Operating system Unix/Linux., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Velvet (RRID:SCR_010755) Copy
Software tools for Motif Discovery and next-gen sequencing analysis. Used for analyzing ChIP-Seq, GRO-Seq, RNA-Seq, DNase-Seq, Hi-C and numerous other types of functional genomics sequencing data sets. Collection of command line programs for unix style operating systems written in Perl and C++.
Proper citation: HOMER (RRID:SCR_010881) Copy
ProPortal is a database containing genomic, metagenomic, transcriptomic and field data for the marine cyanobacterium Prochlorococcus. Our goal is to provide a source of cross-referenced data across multiple scales of biological organization--from the genome to the ecosystem--embracing the full diversity of ecotypic variation within this microbial taxon, its sister group, Synechococcus and phage that infect them. The site currently contains the genomes of 13 Prochlorococcus strains, 11 Synechococcus strains and 28 cyanophage strains that infect one or both groups. Cyanobacterial and cyanophage genes are clustered into orthologous groups that can be accessed by keyword search or through a genome browser. Users can also identify orthologous gene clusters shared by cyanobacterial and cyanophage genomes. Gene expression data for Prochlorococcus ecotypes MED4 and MIT9313 allow users to identify genes that are up or downregulated in response to environmental stressors. In addition, the transcriptome in synchronized cells grown on a 24-h light-dark cycle reveals the choreography of gene expression in cells in a ''natural'' state. Metagenomic sequences from the Global Ocean Survey from Prochlorococcus, Synechococcus and phage genomes are archived so users can examine the differences between populations from diverse habitats. Finally, an example of cyanobacterial population data from the field is included.
Proper citation: ProPortal (RRID:SCR_006112) Copy
http://chgr.mc.vanderbilt.edu/page/gist
Software package to test if a marker can account in part for the linkage signal in its region. There are two versions of the software: Windows and Linux/Unix.
Proper citation: Genotype-IBD Sharing Test (RRID:SCR_006257) Copy
http://genetrail.bioinf.uni-sb.de/
A web-based application that analyzes gene sets for statistically significant accumulations of genes that belong to some functional category. Considered category types are: KEGG Pathways, TRANSPATH Pathways, TRANSFAC Transcription Factor, GeneOntology Categories, Genomic Localization, Protein-Protein Interactions, Coiled-coil domains, Granzyme-B clevage sites, and ELR/RGD motifs. The web server provides two statistical approaches, "Over-Representation Analysis" (ORA) comparing a reference set of genes to a test set, and "Gene Set Enrichment Analysis" (GSEA) scoring sorted lists of genes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GeneTrail (RRID:SCR_006250) Copy
http://www003.upp.so-net.ne.jp/pub/publications.html#sl
Software application for inkage disequilibrium grouping of single nucleotide polymorphisms (SNPs) reflecting haplotype phylogeny for efficient selection of tag SNPs. (entry from Genetic Analysis Software)
Proper citation: LDGROUP (RRID:SCR_006282) Copy
http://igs-server.cnrs-mrs.fr/mgdb/Rickettsia/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 18, 2016. Rickettsia are obligate intracellular bacteria living in arthropods. They occasionally cause diseases in humans. To understand their pathogenicity, physiologies and evolutionary mechanisms, RicBase is sequencing different species of Rickettsia. Up to now we have determined the genome sequences of R. conorii, R. felis, R. bellii, R. africae, and R. massiliae. The RicBase aims to organize the genomic data to assist followup studies of Rickettsia. This website contains information on R. conorii and R. prowazekii. A R. conorii and R. prowazekii comparative genome map is also available. Images of genome maps, dendrogram, and sequence alignment allow users to gain a visualization of the diagrams.
Proper citation: Rickettsia Genome Database (RRID:SCR_007102) Copy
http://bond.unleashedinformatics.com/
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 19,2019.BOND, which requires registration of a free account, is a resource used to perform cross-database searches of available sequence, interaction, complex and pathway information. BOND integrates a range of component databases including GenBank and BIND, the Biomolecular Interaction Network Database. BOND contains 70+ million biological sequences, 33,000 structures, 38,000 GO terms, and over 200,000 human curated interactions contained in BIND, and is open access. BOND serves the interests of the developing global interactome effort encompassing the genomic, proteomic and metabolomic research communities. BOND is the first open access search resource to integrate sequence and interaction information. BOND integrates BLAST functionality, and contains a well-documented API. BOND also stores annotation links for sequences, including links to Genome Ontology descriptions, MedLine abstracts, taxon identifiers, associated structures, redundant sequences, sequence neighbors, conserved domains, data base cross-references, Online Mendalian Inheritance in Man identifiers, LocusLink identifiers and complete genomes. BIND on BOND The Biomolecular Interaction Network Database (BIND), a component database of BOND, is a collection of records documenting molecular interactions. The contents of BIND include high-throughput data submissions and hand-curated information gathered from the scientific literature. BIND is an interaction database with three classifications for molecular associations: molecules that associate with each other to form interactions, molecular complexes that are formed from one or more interaction(s) and pathways that are defined by a specific sequence of two or more interactions.Interactions A BIND record represents an interaction between two or more objects that is believed to occur in a living organism. A biological object can be a protein, DNA, RNA, ligand, molecular complex, gene, photon or an unclassified biological entity. BIND records are created for interactions which have been shown experimentally and published in at least one peer-reviewed journal. A record also references any papers with experimental evidence that support or dispute the associated interaction. Interactions are the basic units of BIND and can be linked together to form molecular complexes or pathways. The BIND interaction viewer is a tool to visualize and analyze molecular interactions, complexes and pathways. The BIND interaction viewer uses Ontoglyphs to display information about a protein via attributes such as molecular function, biological process and sub-cellular localization. Ontoglyphs allow to graphically and interactively explore interaction networks, by visualizing interactions in the context of 34 functional, 25 binding specificity and 24 sub-cellular localization Ontoglyphs categories. We will continue to provide an open access version of BOND, providing its subscribers with free, unlimited access to a core content set. But we are confident you will soon want to upgrade to BONDplus.
Proper citation: Biomolecular Object Network Databank (RRID:SCR_007433) Copy
http://mips.gsf.de/genre/proj/ustilago/
The MIPS Ustilago maydis Genome Database aims to present information on the molecular structure and functional network of the entirely sequenced, filamentous fungus Ustilago maydis. The underlying sequence is the initial release of the high quality draft sequence of the Broad Institute. The goal of the MIPS database is to provide a comprehensive genome database in the Genome Research Environment in parallel with other fungal genomes to enable in depth fungal comparative analysis. The specific aims are to: 1. Generate and assemble Whole Genome Shotgun sequence reads yielding 10X coverage of the U. maydis genome 2. Integrate the genomic sequence assembly with physical maps generated by Bayer CropScience 3. Perform automated annotation of the sequence assembly 4. Align the strain 521 assembly with the FB1 assembly provided by Exelixis 5. Release the sequence assembly and results of our annotation and analysis to public Ustilago maydis is a basidiomycete fungal pathogen of maize and teosinte. The genome size is approximately 20 Mb. The fungus induces tumors on host plants and forms masses of diploid teliospores. These spores germinate and form haploid meiotic products that can be propagated in culture as yeast-like cells. Haploid strains of opposite mating type fuse and form a filamentous, dikaryotic cell type that invades plant tissue to reinitiate infection. Ustilago maydis is an important model system for studying pathogen-host interactions and has been studied for more than 100 years by plant pathologists. Molecular genetic research with U. maydis focuses on recombination, the role of mating in pathogenesis, and signaling pathways that influence virulence. Recently, the fungus has emerged as an excellent experimental model for the molecular genetic analysis of phytopathogenesis, particularly in the characterization of infection-specific morphogenesis in response to signals from host plants. Ustilago maydis also serves as an important model for other basidiomycete plant pathogens that are more difficult to work with in the laboratory, such as the rust and bunt fungi. Genomic sequence of U. maydis will also be valuable for comparative analysis of other fungal genomes, especially with respect to understanding the host range of fungal phytopathogens. The analysis of U. maydis would provide a framework for studying the hundreds of other Ustilago species that attack important crops, such as barley, wheat, sorghum, and sugarcane. Comparisons would also be possible with other basidiomycete fungi, such as the important human pathogen C. neoformans. Commercially, U. maydis is an excellent model for the discovery of antifungal drugs. In addition, maize tumors caused by U. maydis are prized in Hispanic cuisine and there is interest in improving commercial production. The complete putative gene set of the Broad Institute''s second release is loaded into the database and in addition all deviating putative genes from a putative gene set produced by MIPS with different gene prediction parameters are also loaded. The complete dataset will then be analysed, gene predictions will be manually corrected due to combined information derived from different gene prediction algorithms and, more important, protein and EST comparisons. Gene prediction will be restricted to ORFs larger than 50 codons; smaller ORFs will be included only if similarities to other proteins or EST matches confirm their existence or if a coding region was postulated by all prediction programs used. The resulting proteins will be annotated. They will be classified according to the MIPS classification catalogue receiving appropriate descriptions. All proteins with a known, characterized homolog will be automatically assigned to functional categories using the MIPS functional catalog. All extracted proteins are in addition automatically analysed and annotated by the PEDANT suite.
Proper citation: MIPS Ustilago maydis Database (RRID:SCR_007563) Copy
http://www.homepages.ed.ac.uk/pmckeigu/pooling/poolscore.htm
Software program for analysis of case-control genetic association studies using allele frequency measurements on DNA pools (entry from Genetic Analysis Software)
Proper citation: POOLSCORE (RRID:SCR_007514) Copy
http://atlasgeneticsoncology.org/
Online journal and database devoted to genes, cytogenetics, and clinical entities in cancer, and cancer-prone diseases. Its aim is to cover the entire field under study and it presents concise and updated reviews (cards) or longer texts (deep insights) concerning topics in cancer research and genomics.
Proper citation: Atlas of Genetics and Cytogenetics in Oncology and Haematology (RRID:SCR_007199) Copy
http://galton.uchicago.edu/~junzhang/LAPSTRUCT.html
Software application to describe population structure using biomarker data ( typically SNPs, CNVs etc.) available in a population sample. The main features different from PCA are: (1) geometrically motivated and graphic model based; (2)robustness of outliers. (entry from Genetic Analysis Software)
Proper citation: LAPSTRUCT (RRID:SCR_007550) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 12,2024. Software application for pedigree drawing (entry from Genetic Analysis Software)
Proper citation: Pedigree-Draw (RRID:SCR_008302) Copy
The Beckman Institute BNMC brings together researchers from many disciplines at Caltech to address problems in the mechanistic modeling of coupled genomic, intercellular and intracellular processes. It represents an attempt to encourage closer interaction and collaboration between groups in Biology, Control and Dynamical Systems, and the Center for Advanced Computing Research. The focus of BNMC is biochemical phenomena occurring within and between cells, in particular the mechanistic modeling of molecular networks of all kinds (e.g., transcriptional, regulatory, metabolic, signal transduction, mechanical, etc.) with and without spatial variation and intercellular communication. BNMC is formed as a coordinated effort aimed at (1) applying existing capabilities to collaboratively solve biological modeling problems that arise in answering scientific questions in Caltech laboratories, (2) exploring a diversity of novel approaches in order to achieve fundamental advances necessary to address the classes of modeling problems biologists want to solve, and (3) organizing projects to better share human experience as well as common infrastructure to avoid duplication and maximize solution interoperability.
Proper citation: Caltech, The Beckman Institute: The Biological Network Modeling Center (RRID:SCR_008060) Copy
https://cran.r-project.org/web/packages/ibdreg/index.html
Software package in S-PLUS and R to test genetic linkage with covariates by regression methods with response IBD sharing for relative pairs. Account for correlations of IBD statistics and covariates for relative pairs within the same pedigree. (entry from Genetic Analysis Software)
Proper citation: IBDREG (RRID:SCR_013127) Copy
Web portal for the administration of Norwegian e-Infrastructure for Life Sciences. Enables Norwegian life scientists and their international collaborators to store, share, archive, and analyse their genomics scale data. NeLS is one of the packages of the ELIXIR.NO project.
Proper citation: NeLS (RRID:SCR_016301) Copy
https://reich.hms.harvard.edu/software
Software application that finds skews in ancestry that are potentially associated with disease genes in recently mixed populations like African Americans. It can be downloaded for either UNIX or Linux.
Proper citation: Ancestrymap (RRID:SCR_004353) Copy
A clade oriented, community curated database containing genomic, genetic, phenotypic and taxonomic information for plant genomes. Genomic information is presented in a comparative format and tied to important plant model species such as Arabidopsis. SGN provides tools such as: BLAST searches, the SolCyc biochemical pathways database, a CAPS experiment designer, an intron detection tool, an advanced Alignment Analyzer, and a browser for phylogenetic trees. The SGN code and database are developed as an open source project, and is based on database schemas developed by the GMOD project and SGN-specific extensions.
Proper citation: SGN (RRID:SCR_004933) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.