Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_003552

    This resource has 1+ mentions.

http://biomine.cs.helsinki.fi/

Service that integrates cross-references from several biological databases into a graph model with multiple types of edges, such as protein interactions, gene-disease associations and gene ontology annotations. Edges are weighted based on their type, reliability, and informativeness. In particular, it formulates protein interaction prediction and disease gene prioritization tasks as instances of link prediction. The predictions are based on a proximity measure computed on the integrated graph.

Proper citation: Biomine (RRID:SCR_003552) Copy   


  • RRID:SCR_003554

    This resource has 1+ mentions.

http://kt.ijs.si/software/SEGS/

A web tool for descriptive analysis of microarray data. The analysis is performed by looking for descriptions of gene sets that are statistically significantly over- or under-expressed between different scenarios within the context of a genome-scale experiments (DNA microarray). Descriptions are defined by using the terms from the Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene-gene interactions found in the ENTREZ database. Gene annotations by GO and KEGG terms can also be found in the ENTREZ database. The tool provides three procedures for testing the enrichment of the gene sets (over- or under-expressed): Fisher's exact test, GSEA and PAGE, and option for combining the results of the tests. Because of the multiple-hypothesis testing nature of the problem, all the p-values are computed using the permutation testing method.

Proper citation: SEGS (RRID:SCR_003554) Copy   


  • RRID:SCR_003452

    This resource has 10+ mentions.

http://www.t-profiler.org

One of the key challenges in the analysis of gene expression data is how to relate the expression level of individual genes to the underlying transcriptional programs and cellular state. The T-profiler tool hosted on this website uses the t-test to score changes in the average activity of pre-defined groups of genes. The gene groups are defined based on Gene Ontology categorization, ChIP-chip experiments, upstream matches to a consensus transcription factor binding motif, and location on the same chromosome, respectively. If desired, an iterative procedure can be used to select a single, optimal representative from sets of overlapping gene groups. A jack-knife procedure is used to make calculations more robust against outliers. T-profiler makes it possible to interpret microarray data in a way that is both intuitive and statistically rigorous, without the need to combine experiments or choose parameters. Currently, gene expression data from Saccharomyces cerevisiae and Candida albicans are supported. Users can submit their microarray data for analysis by clicking on one of the two organism-specific tabs above. Platform: Online tool

Proper citation: T-profiler (RRID:SCR_003452) Copy   


  • RRID:SCR_005413

http://cgi-www.daimi.au.dk/cgi-chili/datfap/frontdoor.py

A database of transcription factors from 13 plant species, and PCR primers for around 90% of them.

Proper citation: DATFAP (RRID:SCR_005413) Copy   


  • RRID:SCR_005773

http://www.plexdb.org/plex.php?database=Barley/funcexpression.php

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 11, 2012. FuncExpression is a web-based resource for functional interpretation of large scale genomics data. FuncExpression can be used for the functional comparison of plant, animal, and fungal gene name lists generated from genomics and proteomics experiments. Multiple gene lists can be classified, compared and visualized. FuncExpression supports two way-integration of plant gene functional information and the gene expression data, which allows for further cross-validation with plant microarray data from related experiments at BarleyBase. Platform: Online tool

Proper citation: FuncExpression (RRID:SCR_005773) Copy   


http://webclu.bio.wzw.tum.de/profcom/

Profiling of Complex Functionality (ProfCom) is a web-based tool for the functional interpretation of a gene list that was identified to be related by experiments. A trait which makes ProfCom a unique tool is an ability to profile enrichments of not only available Gene Ontology (GO) terms but also of complex function. A complex function is constructed as Boolean combination of available GO terms. The complex functions inferred by ProfCom are more specific in comparison to single terms and describe more accurately the functional role of genes. Platform: Online tool

Proper citation: ProfCom - Profiling of complex functionality (RRID:SCR_005797) Copy   


  • RRID:SCR_005798

http://estbioinfo.stat.ub.es/apli/serbgov131/index.php

SerbGO is a web-based tool intended to assist researchers determine which microarray tools for gene expression analysis which make use of the GO ontologies are best suited to their projects. SerbGO is a bidirectional application. The user can ask for some features by checking on the Query Form to get the appropriate tools for their interests. The user can also compare tools to check which features are implemented in each one. Platform: Online tool

Proper citation: SerbGO (RRID:SCR_005798) Copy   


  • RRID:SCR_005790

    This resource has 1+ mentions.

http://www.compbio.dundee.ac.uk/gotcha/gotcha.php

GOtcha provides a prediction of a set of GO terms that can be associated with a given query sequence. Each term is scored independently and the scores calibrated against reference searches to give an accurate percentage likelihood of correctness. These results can be displayed graphically. Why is GOtcha different to what is already out there and why should you be using it? * GOtcha uses a method where it combines information from many search hits, up to and including E-values that are normally discarded. This gives much better sensitivity than other methods. * GOtcha provides a score for each individual term, not just the leaf term or branch. This allows the discrimination between confident assignments that one would find at a more general level and the more specific terms that one would have lower confidence in. * The scores GOtcha provides are calibrated to give a real estimate of correctness. This is expressed as a percentage, giving a result that non-experts are comfortable in interpreting. * GOtcha provides graphical output that gives an overview of the confidence in, or potential alternatives for, particular GO term assignments. The tool is currently web-based; contact David Martin for details of the standalone version. Platform: Online tool

Proper citation: GOtcha (RRID:SCR_005790) Copy   


  • RRID:SCR_005792

    This resource has 1+ mentions.

http://xldb.fc.ul.pt/biotools/rebil/goa/

A tool for assisting the GO annotation of UniProt entries by linking the GO terms present in the uncurated annotations with evidence text automatically extracted from the documents linked to UniProt entries. Platform: Online tool

Proper citation: GoAnnotator (RRID:SCR_005792) Copy   


  • RRID:SCR_005823

    This resource has 10+ mentions.

http://gopubmed.org/web/gopubmed/

A web server which allows users to explore PubMed search results with the Gene Ontology, a hierarchically structured vocabulary for molecular biology. GoPubMed submits a user''''s keywords to PubMed, retrieves the abstracts, detects Gene Ontology terms in the abstracts, displays the subset of Gene Ontology relevant to the original query, and allows the user to browse through the ontology displaying associated papers and their GO annotation. Platform: Online tool

Proper citation: GoPubMed (RRID:SCR_005823) Copy   


  • RRID:SCR_005665

    This resource has 10+ mentions.

http://agbase.msstate.edu/cgi-bin/tools/goslimviewer_select.pl

Service to summarize the GO function associated with a data set using prepared GO Slim sets. The input is a tab separated list of gene product IDs and GO IDs.

Proper citation: GOSlimViewer (RRID:SCR_005665) Copy   


  • RRID:SCR_005821

    This resource has 1+ mentions.

http://www.ebi.ac.uk/expressionprofiler/

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. The EP:GO browser is built into EBI's Expression Profiler, a set of tools for clustering, analysis and visualization of gene expression and other genomic data. With it, you can search for GO terms and identify gene associations for a node, with or without associated subnodes, for the organism of your choice.

Proper citation: Expression Profiler (RRID:SCR_005821) Copy   


  • RRID:SCR_005822

    This resource has 1+ mentions.

http://www.snubi.org/software/GOChase/

GOChase is a set of web-based utilities to detect and correct the errors in GO-based annotations. # GOChase-History resolves the whole modification history of GO IDs. # GOChase-Correct highlights merged GO IDs and redirects to the correct primary term into which the secondary ID was merged. For obsolete GO terms, the nearest non-discarded parent term is recommended by GOChase. This function may be used by GO browsers such as AmiGO and QuickGO to fix broken hyperlinks. # A whole database (such as LocusLink) as a flat file can be loaded into GOChase, reporting the annotation errors and GOChase corrections. # When one inputs a GO ID, GOChase will resolve all gene products annotated with the GO ID across all the major databases. Platform: Online tool

Proper citation: GOChase (RRID:SCR_005822) Copy   


http://www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl

The GO Slim Mapper (aka GO Term Mapper) maps the specific, granular GO terms used to annotate a list of budding yeast gene products to corresponding more general parent GO slim terms. Uses the SGD GO Slim sets. Three GO Slim sets are available at SGD: * Macromolecular complex terms: protein complex terms from the Cellular Component ontology * Yeast GO-Slim: GO terms that represent the major Biological Processes, Molecular Functions, and Cellular Components in S. cerevisiae * Generic GO-Slim: broad, high level GO terms from the Biological Process and Cellular Component ontologies selected and maintained by the Gene Ontology Consortium (GOC) Platform: Online tool

Proper citation: SGD Gene Ontology Slim Mapper (RRID:SCR_005784) Copy   


  • RRID:SCR_005813

    This resource has 1+ mentions.

http://lussierlab.org/GO-Module/GOModule.cgi

GO-Module provides an interface to reduce the dimensionality of GO enrichment results and produce interpretable biomodules of significant GO terms organized by hierarchical knowledge that contain only true positive results. Users can download a text file of GO terms annotated with their significance and identified biomodules, a network visualization of resultant GO IDs or terms in PDF format, and view results in an online table. Platform: Online tool

Proper citation: GO-Module (RRID:SCR_005813) Copy   


  • RRID:SCR_005684

    This resource has 10+ mentions.

http://www.agbase.msstate.edu/cgi-bin/tools/GOanna.cgi

GOanna is used to find annotations for proteins using a similarity search. The input can be a list of IDs or it can be a list of sequences in FASTA format. GOanna will retrieve the sequences if necessary and conduct the specified BLAST search against a user-specified database of GO annotated proteins. The resulting file contains GO annotations of the top BLAST hits. The sequence alignments are also provided so the user can use these to access the quality of the match. Platform: Online tool

Proper citation: GOanna (RRID:SCR_005684) Copy   


http://xldb.fc.ul.pt/biotools/rebil/ssm/

FuSSiMeG is being discontinued, may not be working properly. Please use our new tool ProteinOn. Functional Semantic Similarity Measure between Gene Products (FuSSiMeG) provides a functional similarity measure between two proteins using the semantic similarity between the GO terms annotated with the proteins. Platform: Online tool

Proper citation: FuSSiMeG: Functional Semantic Similarity Measure between Gene-Products (RRID:SCR_005738) Copy   


  • RRID:SCR_005806

    This resource has 10+ mentions.

http://go.princeton.edu/cgi-bin/GOTermMapper

The Generic GO Term Mapper finds the GO terms shared among a list of genes from your organism of choice within a slim ontology, allowing them to be binned into broader categories. The user may optionally provide a custom gene association file or slim ontology, or a custom list of slim terms. The implementation of this Generic GO Term Mapper uses map2slim.pl script written by Chris Mungall at Berkeley Drosophila Genome Project, and some of the modules included in the GO-TermFinder distribution written by Gavin Sherlock and Shuai Weng at Stanford University, made publicly available through the GMOD project. GO Term Mapper serves a different function than the GO Term Finder. GO Term Mapper simply bins the submitted gene list to a static set of ancestor GO terms. In contrast, GO Term Finder finds the GO terms significantly enriched in a submitted list of genes. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Generic GO Term Mapper (RRID:SCR_005806) Copy   


  • RRID:SCR_005799

    This resource has 50+ mentions.

http://smd.stanford.edu/cgi-bin/source/sourceSearch

SOURCE compiles information from several publicly accessible databases, including UniGene, dbEST, UniProt Knowledgebase, GeneMap99, RHdb, GeneCards and LocusLink. GO terms associated with LocusLink entries appear in SOURCE. The mission of SOURCE is to provide a unique scientific resource that pools publicly available data commonly sought after for any clone, GenBank accession number, or gene. SOURCE is specifically designed to facilitate the analysis of large sets of data that biologists can now produce using genome-scale experimental approaches Platform: Online tool

Proper citation: SOURCE (RRID:SCR_005799) Copy   


  • RRID:SCR_005679

    This resource has 1+ mentions.

http://gdm.fmrp.usp.br/tools_bit.php

THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 29, 2012. Gene Class Expression allows functional annotation of SAGE data using the Gene Ontology database. This tool performs searches in the GO database for each SAGE tag, making associations in the selected GO category for a level selected in the hierarchy. This system provides user-friendly data navigation and visualization for mapping SAGE data onto the gene ontology structure. This tool also provides graphical visualization of the percentage of SAGE tags in each GO category, along with confidence intervals and hypothesis testing. Platform: Online tool

Proper citation: Gene Class Expression (RRID:SCR_005679) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X