Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
One of the key challenges in the analysis of gene expression data is how to relate the expression level of individual genes to the underlying transcriptional programs and cellular state. The T-profiler tool hosted on this website uses the t-test to score changes in the average activity of pre-defined groups of genes. The gene groups are defined based on Gene Ontology categorization, ChIP-chip experiments, upstream matches to a consensus transcription factor binding motif, and location on the same chromosome, respectively. If desired, an iterative procedure can be used to select a single, optimal representative from sets of overlapping gene groups. A jack-knife procedure is used to make calculations more robust against outliers. T-profiler makes it possible to interpret microarray data in a way that is both intuitive and statistically rigorous, without the need to combine experiments or choose parameters. Currently, gene expression data from Saccharomyces cerevisiae and Candida albicans are supported. Users can submit their microarray data for analysis by clicking on one of the two organism-specific tabs above. Platform: Online tool
Proper citation: T-profiler (RRID:SCR_003452) Copy
http://www.plexdb.org/plex.php?database=Barley/funcexpression.php
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 11, 2012. FuncExpression is a web-based resource for functional interpretation of large scale genomics data. FuncExpression can be used for the functional comparison of plant, animal, and fungal gene name lists generated from genomics and proteomics experiments. Multiple gene lists can be classified, compared and visualized. FuncExpression supports two way-integration of plant gene functional information and the gene expression data, which allows for further cross-validation with plant microarray data from related experiments at BarleyBase. Platform: Online tool
Proper citation: FuncExpression (RRID:SCR_005773) Copy
http://webclu.bio.wzw.tum.de/profcom/
Profiling of Complex Functionality (ProfCom) is a web-based tool for the functional interpretation of a gene list that was identified to be related by experiments. A trait which makes ProfCom a unique tool is an ability to profile enrichments of not only available Gene Ontology (GO) terms but also of complex function. A complex function is constructed as Boolean combination of available GO terms. The complex functions inferred by ProfCom are more specific in comparison to single terms and describe more accurately the functional role of genes. Platform: Online tool
Proper citation: ProfCom - Profiling of complex functionality (RRID:SCR_005797) Copy
http://estbioinfo.stat.ub.es/apli/serbgov131/index.php
SerbGO is a web-based tool intended to assist researchers determine which microarray tools for gene expression analysis which make use of the GO ontologies are best suited to their projects. SerbGO is a bidirectional application. The user can ask for some features by checking on the Query Form to get the appropriate tools for their interests. The user can also compare tools to check which features are implemented in each one. Platform: Online tool
Proper citation: SerbGO (RRID:SCR_005798) Copy
http://www.compbio.dundee.ac.uk/gotcha/gotcha.php
GOtcha provides a prediction of a set of GO terms that can be associated with a given query sequence. Each term is scored independently and the scores calibrated against reference searches to give an accurate percentage likelihood of correctness. These results can be displayed graphically. Why is GOtcha different to what is already out there and why should you be using it? * GOtcha uses a method where it combines information from many search hits, up to and including E-values that are normally discarded. This gives much better sensitivity than other methods. * GOtcha provides a score for each individual term, not just the leaf term or branch. This allows the discrimination between confident assignments that one would find at a more general level and the more specific terms that one would have lower confidence in. * The scores GOtcha provides are calibrated to give a real estimate of correctness. This is expressed as a percentage, giving a result that non-experts are comfortable in interpreting. * GOtcha provides graphical output that gives an overview of the confidence in, or potential alternatives for, particular GO term assignments. The tool is currently web-based; contact David Martin for details of the standalone version. Platform: Online tool
Proper citation: GOtcha (RRID:SCR_005790) Copy
http://xldb.fc.ul.pt/biotools/rebil/goa/
A tool for assisting the GO annotation of UniProt entries by linking the GO terms present in the uncurated annotations with evidence text automatically extracted from the documents linked to UniProt entries. Platform: Online tool
Proper citation: GoAnnotator (RRID:SCR_005792) Copy
http://agbase.msstate.edu/cgi-bin/tools/goslimviewer_select.pl
Service to summarize the GO function associated with a data set using prepared GO Slim sets. The input is a tab separated list of gene product IDs and GO IDs.
Proper citation: GOSlimViewer (RRID:SCR_005665) Copy
http://www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl
The GO Slim Mapper (aka GO Term Mapper) maps the specific, granular GO terms used to annotate a list of budding yeast gene products to corresponding more general parent GO slim terms. Uses the SGD GO Slim sets. Three GO Slim sets are available at SGD: * Macromolecular complex terms: protein complex terms from the Cellular Component ontology * Yeast GO-Slim: GO terms that represent the major Biological Processes, Molecular Functions, and Cellular Components in S. cerevisiae * Generic GO-Slim: broad, high level GO terms from the Biological Process and Cellular Component ontologies selected and maintained by the Gene Ontology Consortium (GOC) Platform: Online tool
Proper citation: SGD Gene Ontology Slim Mapper (RRID:SCR_005784) Copy
http://www.agbase.msstate.edu/cgi-bin/tools/GOanna.cgi
GOanna is used to find annotations for proteins using a similarity search. The input can be a list of IDs or it can be a list of sequences in FASTA format. GOanna will retrieve the sequences if necessary and conduct the specified BLAST search against a user-specified database of GO annotated proteins. The resulting file contains GO annotations of the top BLAST hits. The sequence alignments are also provided so the user can use these to access the quality of the match. Platform: Online tool
Proper citation: GOanna (RRID:SCR_005684) Copy
http://xldb.fc.ul.pt/biotools/rebil/ssm/
FuSSiMeG is being discontinued, may not be working properly. Please use our new tool ProteinOn. Functional Semantic Similarity Measure between Gene Products (FuSSiMeG) provides a functional similarity measure between two proteins using the semantic similarity between the GO terms annotated with the proteins. Platform: Online tool
Proper citation: FuSSiMeG: Functional Semantic Similarity Measure between Gene-Products (RRID:SCR_005738) Copy
http://genespeed.ccf.org/home/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. Database and customized tools to study the PFAM protein domain content of the transcriptome for all expressed genes of Homo sapiens, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans tethered to both a genomics array repository database and a range of external information resources. GeneSpeed has merged information from several existing data sets including the Gene Ontology Consortium, InterPro, Pfam, Unigene, as well as micro-array datasets. GeneSpeed is a database of PFAM domain homology contained within Unigene. Because Unigene is a non-redundant dbEST database, this provides a wide encompassing overview of the domain content of the expressed transcriptome. We have structured the GeneSpeed Database to include a rich toolset allowing the investigator to study all domain homology, no matter how remote. As a result, homology cutoff score decisions are determined by the scientist, not by a computer algorithm. This quality is one of the novel defining features of the GeneSpeed database giving the user complete control of database content. In addition to a domain content toolset, GeneSpeed provides an assortment of links to external databases, a unique and manually curated Transcription Factor Classification list, as well as links to our newly evolving GeneSpeed BetaCell Database. GeneSpeed BetaCell is a micro-array depository combined with custom array analysis tools created with an emphasis around the meta analysis of developmental time series micro-array datasets and their significance in pancreatic beta cells.
Proper citation: GeneSpeed- A Database of Unigene Domain Organization (RRID:SCR_002779) Copy
A database designed for plant comparative and functional genomics based on complete genomes. It comprises complete proteome sequences from the major phylum of plant evolution. The clustering of these proteomes was performed to define a consistent and extensive set of homeomorphic plant families. Based on this, lists of gene families such as plant or species specific families and several tools are provided to facilitate comparative genomics within plant genomes. The analyses follow two main steps: gene family clustering and phylogenomic analysis of the generated families. Once a group of sequences (cluster) is validated, phylogenetic analyses are performed to predict homolog relationships such as orthologs and ultraparalogs.
Proper citation: GreenPhylDB (RRID:SCR_002834) Copy
http://funsimmat.bioinf.mpi-inf.mpg.de
FunSimMat is a comprehensive resource of semantic and functional similarity values. It allows ranking disease candidate proteins for OMIM diseases and searching for functional similarity values for proteins (extracted from UniProt), and protein families (Pfam, SMART). FunSimMat provides several different semantic and functional similarity measures for each protein pair using the Gene Ontology annotation from UniProtKB and the Gene Ontology Annotation project at EBI (GOA). There are several search options available: Disease candidate prioritization: * Rank candidate proteins using any OMIM disease entry * Compare a list of proteins to any OMIM disease entry * Compare all human proteins to any OMIM disease entry Functional similarity: * Compare one protein / protein family to a list of proteins / protein families * Compare a list of GO terms to a list of proteins / protein families Semantic similarity: * For a list of GO terms, FunSimMat performs an all-against-all comparison and displays the semantic similarity values. FunSimMat provides an XML-RPC interface for performing automatic queries and processing of the results as well as a RestLike Interface. Platform: Online tool
Proper citation: FunSimMat (RRID:SCR_002729) Copy
http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl
Database of embryonic expression patterns using a high throughput RNA in situ hybridization of the protein-coding genes identified in the Drosophila melanogaster genome with images and controlled vocabulary annotations. At the end of production pipeline gene expression patterns are documented by taking a large number of digital images of individual embryos. The quality and identity of the captured image data are verified by independently derived microarray time-course analysis of gene expression using Affymetrix GeneChip technology. Gene expression patterns are annotated with controlled vocabulary for developmental anatomy of Drosophila embryogenesis. Image, microarray and annotation data are stored in a modified version of Gene Ontology database and the entire dataset is available on the web in browsable and searchable form or MySQL dump can be downloaded. So far, they have examined expression of 7507 genes and documented them with 111184 digital photographs.
Proper citation: Patterns of Gene Expression in Drosophila Embryogenesis (RRID:SCR_002868) Copy
http://function.princeton.edu/GOLEM/index.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented July 7, 2017. Welcome to the home of GOLEM: An interactive, graphical gene-ontology visualization, navigation,and analysis tool on the web. GOLEM is a useful tool which allows the viewer to navigate and explore a local portion of the Gene Ontology (GO) hierarchy. Users can also load annotations for various organisms into the ontology in order to search for particular genes, or to limit the display to show only GO terms relevant to a particular organism, or to quickly search for GO terms enriched in a set of query genes. GOLEM is implemented in Java, and is available both for use on the web as an applet, and for download as a JAR package. A brief tutorial on how to use GOLEM is available both online and in the instructions included in the program. We also have a list of links to libraries used to make GOLEM, as well as the various organizations that curate organism annotations to the ontology. GOLEM is available as a .jar package and a macintosh .app for use on- or off- line as a stand-alone package. You will need to have Java (v.1.5 or greater) installed on your system to run GOLEM. Source code (including Eclipse project files) are also available. GOLEM (Gene Ontology Local Exploration Map)is a visualization and analysis tool for focused exploration of the gene ontology graph. GOLEM allows the user to dynamically expand and focus the local graph structure of the gene ontology hierarchy in the neighborhood of any chosen term. It also supports rapid analysis of an input list of genes to find enriched gene ontology terms. The GOLEM application permits the user either to utilize local gene ontology and annotations files in the absence of an Internet connection, or to access the most recent ontology and annotation information from the gene ontology webpage. GOLEM supports global and organism-specific searches by gene ontology term name, gene ontology id and gene name. CONCLUSION: GOLEM is a useful software tool for biologists interested in visualizing the local directed acyclic graph structure of the gene ontology hierarchy and searching for gene ontology terms enriched in genes of interest. It is freely available both as an application and as an applet.
Proper citation: GOLEM An interactive, graphical gene-ontology visualization, navigation, and analysis tool (RRID:SCR_003191) Copy
A functional network for laboratory mouse based on integration of diverse genetic and genomic data. It allows the users to accurately predict novel functional assignments and network components. MouseNET uses a probabilistic Bayesian algorithm to identify genes that are most likely to be in the same pathway/functional neighborhood as your genes of interest. It then displays biological network for the resulting genes as a graph. The nodes in the graph are genes (clicking on each node will bring up SGD page for that gene) and edges are interactions (clicking on each edge will show evidence used to predict this interaction). Most likely, the first results to load on the results page will be a list of significant Gene Ontology terms. This list is calculated for the genes in the biological network created by the mouseNET algorithm. If a gene ontology term appears on this list with a low p-value, it is statistically significantly overrepresented in this biological network. The graph may be explored further. As you move the mouse over genes in the network, interactions involving these genes are highlighted.If you click on any of the highlighted interactions graph, evidence pop-up window will appear. The Evidence pop-up lists all evidence for this interaction, with links to the papers that produced this evidence - clicking these links will bring up the relevant source citation(s) in PubMed.
Proper citation: MouseNET (RRID:SCR_003357) Copy
http://geneontology.org/docs/tools-overview/
Collection of tools developed by GO Consortium and by third parties. Tools are listed by category or alphabetically and continue to be improved and expanded.
Proper citation: Gene Ontology Tools (RRID:SCR_006941) Copy
http://autismkb.cbi.pku.edu.cn/
Genetic factors contribute significantly to ASD. AutismKB is an evidence-based knowledgebase of Autism spectrum disorder (ASD) genetics. The current version contains 2193 genes (99 syndromic autism related genes and 2135 non-syndromic autism related genes), 4617 Copy Number Variations (CNVs) and 158 linkage regions associated with ASD by one or more of the following six experimental methods: # Genome-Wide Association Studies (GWAS); # Genome-wide CNV studies; # Linkage analysis; # Low-scale genetic association studies; # Expression profiling; # Other low-scale gene studies. Based on a scoring and ranking system, 99 syndromic autism related genes and 383 non-syndromic autism related genes (434 genes in total) were designated as having high confidence. Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a prevalence of 1.0-2.6%. The three core symptoms of ASD are: # impairments in reciprocal social interaction; # communication impairments; # presence of restricted, repetitive and stereotyped patterns of behavior, interests and activities.
Proper citation: AutismKB (RRID:SCR_006937) Copy
A wiki where users of the Gene Ontology can contribute and view notes about how specific GO terms are used. GONUTS can also be used as a GO term browser, or to search for GO annotations of specific genes from included organisms. The rationale for this wiki is based on helping new users of the gene ontology understand and use it. The GONUTS wiki is not an official product of the the Gene Ontology consortium. The GO consortium has a public wiki at their website, http://wiki.geneontology.org/. Maintaining the ontology involves many decisions to carefully choose terms and relationships. These decisions are currently made at GO meetings and via online discussion using the GO mailing lists and the Sourceforge curator request tracker. However, it is difficult for someone starting to use GO to understand these decisions. Some insight can be obtained by mining the tracker, the listservs and the minutes of GO meetings, but this is difficult, as these discussions are often dispersed and sometimes don't contain the GO accessions in the relevant messages. Wikis provide a way to create collaboratively written documentation for each GO term to explain how it should be used, how to satisfy the true path requirement, and whether an annotation should be placed at a different level. In addition, the wiki pages provide a discussion space, where users can post questions and discuss possible changes to the ontology. GONUTS is currently set up so anyone can view or search, but only registered users can edit or add pages. Currently registered users can create new users, and we are working to add at least one registered user for each participating database (So far we have registered users at EcoliHub, EcoCyc, GOA, BeeBase, SGD, dictyBase, FlyBase, WormBase, TAIR, Rat Genome Database, ZFIN, MGI, UCL and AgBase...
Proper citation: GONUTS (RRID:SCR_000653) Copy
Portal devoted to aging relevant scientific data and resources.
Proper citation: Aging Portal (RRID:SCR_000496) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.