Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://neuinfo.org/mynif/search.php?list=cover&q=*
Service that partners with the community to expose and simultaneously drill down into individual databases and data sets and return relevant content. This type of content, part of the so called hidden Web, is typically not indexed by existing web search engines. Every record links back to the originating site. In order for NIF to directly query these independently maintained databases and datasets, database providers must register their database or dataset with the NIF Data Federation and specify permissions. Databases are concept mapped for ease of sharing and to allow better understanding of the results. Learn more about registering your resource, http://neuinfo.org/nif_components/disco/interoperation.shtm Search results are displayed under the Data Federation tab and are categorized by data type and nervous system level. In this way, users can easily step through the content of multiple resources, all from the same interface. Each federated resource individually displays their query results with links back to the relevant datasets within the host resource. This allows users to take advantage of additional views on the data and tools that are available through the host database. The NIF site provides tutorials for each resource, indicated by the Professor Icon professor icon showing users how to navigate the results page once directed there through the NIF. Additionally, query results may be exported as an Excel document. Note: NIF is not responsible for the availability or content of these external sites, nor does NIF endorse, warrant or guarantee the products, services or information described or offered at these external sites. Integrated Databases: Theses virtual databases created by NIF and other partners combine related data indexed from multiple databases and combine them into one view for easier browsing. * Integrated Animal View * Integrated Brain Gene Expression View * Integrated Disease View * Integrated Nervous System Connectivity View * Integrated Podcasts View * Integrated Software View * Integrated Video View * Integrated Jobs * Integrated Blogs For a listing of the Federated Databases see, http://neuinfo.org/mynif/databaseList.php or refer to the Resources Listed by NIF Data Federation table below.
Proper citation: NIF Data Federation (RRID:SCR_004834) Copy
Software package that provides the ability to do a number of standard semantic similarity methods and includes novel methods for combining these with dynamic selection of anonymous grouping classes. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: OwlSim (RRID:SCR_006819) Copy
A comprehensive analysis and visualization software package for gene expression experiments that provides: a number of clustering and analysis techniques; integrated gene expression and analysis result visualizations, integration with the Gene Expression Omnibus; and an optional data sharing architecture. GO is used to assign functional enrichment scores to clusters, using a combination of specially developed techniques and general statistical methods. These results can be explored using the in built ontology browsing tool or through the generated web pages. SeqExpress also supports numerous data transformation, projection, visualization, file export/import, searching, integration (with R), and clustering options.
Proper citation: SeqExpress (RRID:SCR_007075) Copy
The human pathway database which contains different biological entities and reactions and software tools for analysis. PATIKA Database integrates data from several sources, including Entrez Gene, UniProt, PubChem, GO, IntAct, HPRD, and Reactome. Users can query and access this data using the PATIKAweb query interface. Users can also save their results in XML or export to common picture formats. The BioPAX and SBML exporters can be used as part of this Web service.
Proper citation: Pathway Analysis Tool for Integration and Knowledge Acquisition (RRID:SCR_002100) Copy
http://go.princeton.edu/cgi-bin/GOTermMapper
The Generic GO Term Mapper finds the GO terms shared among a list of genes from your organism of choice within a slim ontology, allowing them to be binned into broader categories. The user may optionally provide a custom gene association file or slim ontology, or a custom list of slim terms. The implementation of this Generic GO Term Mapper uses map2slim.pl script written by Chris Mungall at Berkeley Drosophila Genome Project, and some of the modules included in the GO-TermFinder distribution written by Gavin Sherlock and Shuai Weng at Stanford University, made publicly available through the GMOD project. GO Term Mapper serves a different function than the GO Term Finder. GO Term Mapper simply bins the submitted gene list to a static set of ancestor GO terms. In contrast, GO Term Finder finds the GO terms significantly enriched in a submitted list of genes. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: Generic GO Term Mapper (RRID:SCR_005806) Copy
http://smd.stanford.edu/cgi-bin/source/sourceSearch
SOURCE compiles information from several publicly accessible databases, including UniGene, dbEST, UniProt Knowledgebase, GeneMap99, RHdb, GeneCards and LocusLink. GO terms associated with LocusLink entries appear in SOURCE. The mission of SOURCE is to provide a unique scientific resource that pools publicly available data commonly sought after for any clone, GenBank accession number, or gene. SOURCE is specifically designed to facilitate the analysis of large sets of data that biologists can now produce using genome-scale experimental approaches Platform: Online tool
Proper citation: SOURCE (RRID:SCR_005799) Copy
http://gdm.fmrp.usp.br/tools_bit.php
THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 29, 2012. Gene Class Expression allows functional annotation of SAGE data using the Gene Ontology database. This tool performs searches in the GO database for each SAGE tag, making associations in the selected GO category for a level selected in the hierarchy. This system provides user-friendly data navigation and visualization for mapping SAGE data onto the gene ontology structure. This tool also provides graphical visualization of the percentage of SAGE tags in each GO category, along with confidence intervals and hypothesis testing. Platform: Online tool
Proper citation: Gene Class Expression (RRID:SCR_005679) Copy
http://vortex.cs.wayne.edu/projects.htm#Onto-Compare
Microarrays are at the center of a revolution in biotechnology, allowing researchers to screen tens of thousands of genes simultaneously. Typically, they have been used in exploratory research to help formulate hypotheses. In most cases, this phase is followed by a more focused, hypothesis driven stage in which certain specific biological processes and pathways are thought to be involved. Since a single biological process can still involve hundreds of genes, microarrays are still the preferred approach as proven by the availability of focused arrays from several manufacturers. Since focused arrays from different manufacturers use different sets of genes, each array will represent any given regulatory pathway to a different extent. We argue that a functional analysis of the arrays available should be the most important criterion used in the array selection. We developed Onto-Compare as a database that can provide this functionality, based on the GO nomenclature. Compare commercially available microarrays based on GO. User account required. Platform: Online tool
Proper citation: Onto-Compare (RRID:SCR_005669) Copy
Database of histopathology photomicrographs and macroscopic images derived from mutant or genetically manipulated mice. The database currently holds more than 1000 images of lesions from mutant mice and their inbred backgrounds and further images are being added continuously. Images can be retrieved by searching for specific lesions or class of lesion, by genetic locus, or by a wide set of parameters shown on the Advanced Search Interface. Its two key aims are: * To provide a searchable database of histopathology images derived from experimental manipulation of the mouse genome or experiments conducted on genetically manipulated mice. * A reference / didactic resource covering all aspects of mouse pathology Lesions are described according to the Pathbase pathology ontology developed by the Pathbase European Consortium, and are available at the site or on the Gene Ontology Consortium site - OBO. As this is a community resource, they encourage everyone to upload their own images, contribute comments to images and send them their feedback. Please feel free to use any of the SOAP/WSDL web services. (under development)
Proper citation: Pathbase (RRID:SCR_006141) Copy
http://code.google.com/p/behavior-ontology
An ontology consisting of two main components, an ontology of behavioral processes and an ontology of behavioral phenotypes. The behavioral process branch of NBO contains a classification of behavior processes complementing and extending the GO process ontology. The behavior phenotype branch of NBO consists of a classification of both normal and abnormal behavioral characteristics of organisms. The prime application of NBO is to provide the vocabulary that is required to integrate behavior observations within and across species. It is currently being applied by several model organism communities as well as in the description of human behavior-related disease phenotypes. The main ontology is available in both the OBO Flatfile Format and the Web Ontology Language (OWL).
Proper citation: Neurobehavior Ontology (RRID:SCR_006201) Copy
http://cbl-gorilla.cs.technion.ac.il/
A tool for identifying and visualizing enriched GO terms in ranked lists of genes. It can be run in one of two modes: * Searching for enriched GO terms that appear densely at the top of a ranked list of genes or * Searching for enriched GO terms in a target list of genes compared to a background list of genes.
Proper citation: GOrilla: Gene Ontology Enrichment Analysis and Visualization Tool (RRID:SCR_006848) Copy
http://www.bioguo.org/AnimalTFDB/
A comprehensive transcription factor (TF) database in which they identified and classified all the genome-wide TFs in 50 sequenced animal genomes (Ensembl release version 60). In addition to TFs, it also collects transcription co-factors and chromatin remodeling factors of those genomes, which play regulatory roles in transcription. Here they defined the TFs as proteins containing a sequence-specific DNA-binding domain (DBD) and regulating target gene expression. Currently, the AnimalTFDB classifies all the animal TFs into 72 families according to their conserved DBDs. Gene lists of transcription factors, transcription co-factors and chromatin remodeling factors of each species are available for downloading., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: AnimalTFDB (RRID:SCR_001624) Copy
http://compbio.dfci.harvard.edu/amp/
THIS RESOURCE IS NO LONGER IN SERVICE, documented November 4, 2015. Web application based on the TM4 Microarray Software Suite to provide a means of normalization and analysis of microarray data. Users can upload data in the form of Affymetrix CEL files, and define an analysis pipeline by selecting several intuitive options. It performs data normalization (eg RMA), basic statistical analysis (eg t-test, ANOVA), and analysis of annotation using gene classification (eg Gene Ontology term assignment). The analysis are performed without user intervention and the results are presented in a web-based summary that allows data to be downloaded in a variety of formats compatible with further directed analysis.
Proper citation: Automated Microarray Pipeline (RRID:SCR_001219) Copy
Data analysis service that predicts protein subcellular localizations of animal, fungal, plant, and human proteins based on sequence similarity and gene ontology information.
Proper citation: WegoLoc (RRID:SCR_001402) Copy
http://cgi-www.daimi.au.dk/cgi-chili/datfap/frontdoor.py
A database of transcription factors from 13 plant species, and PCR primers for around 90% of them.
Proper citation: DATFAP (RRID:SCR_005413) Copy
http://www.plexdb.org/plex.php?database=Barley/funcexpression.php
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 11, 2012. FuncExpression is a web-based resource for functional interpretation of large scale genomics data. FuncExpression can be used for the functional comparison of plant, animal, and fungal gene name lists generated from genomics and proteomics experiments. Multiple gene lists can be classified, compared and visualized. FuncExpression supports two way-integration of plant gene functional information and the gene expression data, which allows for further cross-validation with plant microarray data from related experiments at BarleyBase. Platform: Online tool
Proper citation: FuncExpression (RRID:SCR_005773) Copy
http://webclu.bio.wzw.tum.de/profcom/
Profiling of Complex Functionality (ProfCom) is a web-based tool for the functional interpretation of a gene list that was identified to be related by experiments. A trait which makes ProfCom a unique tool is an ability to profile enrichments of not only available Gene Ontology (GO) terms but also of complex function. A complex function is constructed as Boolean combination of available GO terms. The complex functions inferred by ProfCom are more specific in comparison to single terms and describe more accurately the functional role of genes. Platform: Online tool
Proper citation: ProfCom - Profiling of complex functionality (RRID:SCR_005797) Copy
http://estbioinfo.stat.ub.es/apli/serbgov131/index.php
SerbGO is a web-based tool intended to assist researchers determine which microarray tools for gene expression analysis which make use of the GO ontologies are best suited to their projects. SerbGO is a bidirectional application. The user can ask for some features by checking on the Query Form to get the appropriate tools for their interests. The user can also compare tools to check which features are implemented in each one. Platform: Online tool
Proper citation: SerbGO (RRID:SCR_005798) Copy
http://www.compbio.dundee.ac.uk/gotcha/gotcha.php
GOtcha provides a prediction of a set of GO terms that can be associated with a given query sequence. Each term is scored independently and the scores calibrated against reference searches to give an accurate percentage likelihood of correctness. These results can be displayed graphically. Why is GOtcha different to what is already out there and why should you be using it? * GOtcha uses a method where it combines information from many search hits, up to and including E-values that are normally discarded. This gives much better sensitivity than other methods. * GOtcha provides a score for each individual term, not just the leaf term or branch. This allows the discrimination between confident assignments that one would find at a more general level and the more specific terms that one would have lower confidence in. * The scores GOtcha provides are calibrated to give a real estimate of correctness. This is expressed as a percentage, giving a result that non-experts are comfortable in interpreting. * GOtcha provides graphical output that gives an overview of the confidence in, or potential alternatives for, particular GO term assignments. The tool is currently web-based; contact David Martin for details of the standalone version. Platform: Online tool
Proper citation: GOtcha (RRID:SCR_005790) Copy
http://xldb.fc.ul.pt/biotools/rebil/goa/
A tool for assisting the GO annotation of UniProt entries by linking the GO terms present in the uncurated annotations with evidence text automatically extracted from the documents linked to UniProt entries. Platform: Online tool
Proper citation: GoAnnotator (RRID:SCR_005792) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.