Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Platform for analysis of the genetics of cardiovascular disease.Used for searching and analysis of human genetic information linked to myocardial infarction, atrial fibrillation and related traits while protecting the integrity and confidentiality of the data.
Proper citation: Cardiovascular Disease Knowledge Portal (RRID:SCR_016536) Copy
https://www.ncbi.nlm.nih.gov/projects/mutagene/
Software tool to explore and analyze mutagenic factors leading to tumors to decipher cancer genetic heterogeneity.
Proper citation: MutaGene (RRID:SCR_016574) Copy
http://www.dkfz.de/en/epidemiologie-krebserkrankungen/software/software.html
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 24,2023. Software program that performs estimation of power and sample sizes required to detect genetic and environmental main, as well as gene-environment interaction (GxE) effects in indirect matched case-control studies (1:1 matching). When the hypothesis of GxE is tested, power/sample size will be estimated for the detection of GxE, as well as for the detection of genetic and environmental marginal effects. Furthermore, power estimation is implemented for the joint test of genetic marginal and GxE effects (Kraft P et al., 2007). Power and sample size estimations are based on Gauderman''s (2002) asymptotic approach for power and sample size estimations in direct studies of GxE. Hardy-Weinberg equilibrium and independence of genotypes and environmental exposures in the population are assumed. The estimates are based on genotypic codes (G=1 (G=0) for individuals who carry a (non-) risk genotype), which depend on the mode of inheritance (dominant, recessive, or multiplicative). A conditional logistic regression approach is used, which employs a likelihood-ratio test with respect to a biallelic candidate SNP, a binary environmental factor (E=1 (E=0) in (un)exposed individuals), and the interaction between these components. (entry from Genetic Analysis Software)
Proper citation: PIAGE (RRID:SCR_013124) Copy
http://bioinformatics.ust.hk/BOOST.html
Software application (entry from Genetic Analysis Software) for a method for detecting gene-gene interactions. It allows examining all pairwise interactions in genome-wide case-control studies.
Proper citation: BOOST (RRID:SCR_013133) Copy
http://folk.uio.no/thoree/FEST/
An R package for simulations and likelihood calculations of pair-wise family relationships using DNA marker data. (entry from Genetic Analysis Software)
Proper citation: R/FEST (RRID:SCR_013347) Copy
i2b2 (Informatics for Integrating Biology and the Bedside) is an NIH-funded National Center for Biomedical Computing based at Partners HealthCare System. The i2b2 Center is developing a scalable informatics framework that will enable clinical researchers to use existing clinical data for discovery research and, when combined with IRB-approved genomic data, facilitate the design of targeted therapies for individual patients with diseases having genetic origin. For some resources (e.g. software) the use of the resource requires accepting a specific (e.g. OpenSource) license.
Proper citation: Informatics for Integrating Biology and the Bedside (RRID:SCR_013629) Copy
http://www.nitrc.org/projects/nusdast
A repository of schizophrenia neuroimaging data collected from over 450 individuals with schizophrenia, healthy controls and their respective siblings, most with 2-year longitudinal follow-up. The data include neuroimaging data, cognitive data, clinical data, and genetic data.
Proper citation: Northwestern University Schizophrenia Data and Software Tool (NUSDAST) (RRID:SCR_014153) Copy
Center for the study of non-human primates. Its mission is the study and use of non-human primates as models for studies of social and biological interactions and for the discovery of methods of prevention, diagnosis and treatment of diseases that afflict humans. Through the stewardship of three unique facilities—Cayo Santiago Field Station, Sabana Seca Field Station, and the Laboratory of Primate Morphology supports a diverse range of research programs that enhance understanding of primate biology and behavior, with direct applications in biomedical and translational research.
Proper citation: Caribbean Primate Research Center (RRID:SCR_008345) Copy
http://genewindow.nci.nih.gov/
Software tool for pre- and post-genetic bioinformatics and analytical work, developed and used at the Core Genotyping Facility (CGF) at the National Cancer Institute. While Genewindow is implemented for the human genome and integrated with the CGF laboratory data, it stands as a useful tool to assist investigators in the selection of variants for study in vitro, or in novel genetic association studies. The Genewindow application and source code is publicly available for use in other genomes, and can be integrated with the analysis, storage, and archiving of data generated in any laboratory setting. This can assist laboratories in the choice and tracking of information related to genetic annotations, including variations and genomic positions. Features of GeneWindow include: -Intuitive representation of genomic variation using advanced web-based graphics (SVG) -Search by HUGO gene symbol, dbSNP ID, internal CGF polymorphism ID, or chromosome coordinates -Gene-centric display (only when a gene of interest is in view) oriented 5 to 3 regardless of the reference strand and adjacent genes -Two views, a Locus Overview, which varies in size depending on the gene or genomic region being viewed and, below it, a Sequence View displaying 2000 base pairs within the overview -Navigate the genome by clicking along the gene in the Locus Overview to change the Sequence View, expand or contract the genomic interval, or shift the view in the 5 or 3 direction (relative to the current gene) -Lists of available genomic features -Search for sequence matches in the Locus Overview -Genomic features are represented by shape, color and opacity with contextual information visible when the user moves over or clicks on a feature -Administrators can insert newly-discovered polymorphisms into the Genewindow database by entering annotations directly through the GUI -Integration with a Laboratory Information Management System (LIMS) or other databases is possible
Proper citation: GeneWindow (RRID:SCR_008183) Copy
Web application for simulating SNP genotypes for case-control and affected-child trio studies by resampling from Phase I/II HapMap SNP data. The user provides a list of SNPs to be genotyped, along with a disease model file that describes causal SNPs and their effect sizes. The simulation tool is appropriate for candidate regions or whole-genome scans. (entry from Genetic Analysis Software)
Proper citation: HAP-SAMPLE (RRID:SCR_009234) Copy
http://pages.stat.wisc.edu/~yandell/qtl/software/qtlbim/
Software library for QTL Bayesian Interval Mapping that provides a Bayesian model selection approach to map multiple interacting QTL. It works on experimentally inbred lines and performs a genome-wide search to locate multiple potential QTL. The package can handle continuous, binary and ordinal traits. (entry from Genetic Analysis Software)
Proper citation: R/QTLBIM (RRID:SCR_009375) Copy
http://cerebrovascularportal.org
Portal enables browsing, searching, and analysis of human genetic information linked to cerebrovascular disease and related traits, while protecting the integrity and confidentiality of the underlying data.
Proper citation: Cerebrovascular Disease Knowledge Portal (RRID:SCR_015628) Copy
http://ccr.coriell.org/Sections/Collections/CDC/?SsId=16
A repository which houses DNA samples prepared from reference cell lines and are available for use in molecular genetic testing. The CF samples contain mutations associated with unique populations, combinations of IVS8 poly-thymidine tract variants, and mutations not previously available. Three DNA samples with homozygous MTHFR-related mutations are available. Hemochromatosis-associated samples include a compound HFE heterozygote and other combinations of HFE alleles. DNA samples with triplet repeats at the intermediate-range are available for HD and Fragile X syndrome. Mutations were confirmed in all cell lines from which the DNA has been prepared by reference testing and multi-laboratory pilot testing. Control DNA samples negative for all mutations are also available. Laboratories are encouraged to contact Coriell Cell Repositories to inquire about obtaining samples or donating samples as possible candidates for transformation.
Proper citation: CDC Cell and DNA Repository (RRID:SCR_004680) Copy
https://sfari.org/resources/simons-simplex-collection
Repository of genetic samples from approximately 3,000 families, each of which has one child affected with an Autism Spectrum Disorder (ASD) and parents unaffected with ASD. A central database characterizing all of the study subjects is available to any qualified researcher and biospecimens are freely available to SFARI grant holders, and to other researchers on a modest fee-for-use basis. Each genetic sample will have an associated collection of data that provides a precise characterization of the individual (phenotype). Rigorous phenotyping will maximize the value of the resource for a wide variety of future research projects into the causes and mechanisms of autism. The Simons Simplex Collection is operated by SFARI in collaboration with twelve university-affiliated research clinics.
Proper citation: Simons Simplex Collection (RRID:SCR_004644) Copy
Center for investigators studying human health and disease, offering the opportunity to assess the causes of disease, and new treatment methods in nonhuman primate models that closely recapitulate humans. Its mission is to provide interdisciplinary programs in biomedical research on significant human health-related problems in which nonhuman primates are the models of choice.
Proper citation: California National Primate Research Center (RRID:SCR_006426) Copy
http://galton.uchicago.edu/~junzhang/LAPSTRUCT.html
Software application to describe population structure using biomarker data ( typically SNPs, CNVs etc.) available in a population sample. The main features different from PCA are: (1) geometrically motivated and graphic model based; (2)robustness of outliers. (entry from Genetic Analysis Software)
Proper citation: LAPSTRUCT (RRID:SCR_007550) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 12,2024. Software application for pedigree drawing (entry from Genetic Analysis Software)
Proper citation: Pedigree-Draw (RRID:SCR_008302) Copy
https://www.broadinstitute.org/ccle/
A collaborative project between the Broad Institute and the Novartis Institutes for Biomedical Research and its Genomics Institute of the Novartis Research Foundation, with the goal of conducting a detailed genetic and pharmacologic characterization of a large panel of human cancer models. The CCLE also works to develop integrated computational analyses that link distinct pharmacologic vulnerabilities to genomic patterns and to translate cell line integrative genomics into cancer patient stratification. The CCLE provides public access to genomic data, analysis and visualization for about 1000 cell lines.
Proper citation: Cancer Cell Line Encyclopedia (RRID:SCR_013836) Copy
https://cran.r-project.org/web/packages/ibdreg/index.html
Software package in S-PLUS and R to test genetic linkage with covariates by regression methods with response IBD sharing for relative pairs. Account for correlations of IBD statistics and covariates for relative pairs within the same pedigree. (entry from Genetic Analysis Software)
Proper citation: IBDREG (RRID:SCR_013127) Copy
https://www.ars-grin.gov/npgs/
Cooperative effort by U.S. state and federal government and private organizations to preserve the genetic diversity of plants. The NPGS aids scientists and the need for genetic diversity by acquiring, preserving, evaluating, documenting and distributing crop germplasm. The NPGS is managed by the Agricultural Research Service (ARS), the in-house research agency of the United States Department of Agriculture (USDA). Funding for the NPGS comes primarily through appropriations from the U.S. Congress.
Proper citation: National Plant Germplasm System (NPGS) (RRID:SCR_016785) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.