Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 out of 445 results
Snippet view Table view Download 445 Result(s)
Click the to add this resource to a Collection

http://www.jneurosci.org/supplemental/18/12/4570/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on January 29, 2013. Supplemental data for the paper Changes in mitochondrial function resulting from synaptic activity in the rat hippocampal slice, by Vytautas P. Bindokas, Chong C. Lee, William F. Colmers, and Richard J. Miller that appears in the Journal of Neuroscience June 15, 1998. You can view digital movies of changes in fluorescence intensity by clicking on the title of interest.

Proper citation: Hippocampal Slice Wave Animations (RRID:SCR_008372) Copy   


  • RRID:SCR_008395

    This resource has 5000+ mentions.

http://salilab.org/modeller/modeller.html

Software tool as Program for Comparative Protein Structure Modelling by Satisfaction of Spatial Restraints. Used for homology or comparative modeling of protein three dimensional structures. User provides alignment of sequence to be modeled with known related structures and MODELLER automatically calculates model containing all non hydrogen atoms.

Proper citation: MODELLER (RRID:SCR_008395) Copy   


http://www.zebrafinchatlas.org

Expression atlas of in situ hybridization images from large collection of genes expressed in brain of adult male zebra finches. Goal of ZEBrA project is to develop publicly available on-line digital atlas that documents expression of large collection of genes within brain of adult male zebra finches.

Proper citation: Zebra Finch Expression Brain Atlas (RRID:SCR_012988) Copy   


https://omictools.com/l2l-tool

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 26, 2019.

Database of published microarray gene expression data, and a software tool for comparing that published data to a user''''s own microarray results. It is very simple to use - all you need is a web browser and a list of the probes that went up or down in your experiment. If you find L2L useful please consider contributing your published data to the L2L Microarray Database in the form of list files. L2L finds true biological patterns in gene expression data by systematically comparing your own list of genes to lists of genes that have been experimentally determined to be co-expressed in response to a particular stimulus - in other words, published lists of microarray results. The patterns it finds can point to the underlying disease process or affected molecular function that actually generated the observed changed in gene expression. Its insights are far more systematic than critical gene analyses, and more biologically relevant than pure Gene Ontology-based analyses. The publications included in the L2L MDB initially reflected topics thought to be related to Cockayne syndrome: aging, cancer, and DNA damage. Since then, the scope of the publications included has expanded considerably, to include chromatin structure, immune and inflammatory mediators, the hypoxic response, adipogenesis, growth factors, hormones, cell cycle regulators, and others. Despite the parochial origins of the database, the wide range of topics covered will make L2L of general interest to any investigator using microarrays to study human biology. In addition to the L2L Microarray Database, L2L contains three sets of lists derived from Gene Ontology categories: Biological Process, Cellular Component, and Molecular Function. As with the L2L MDB, each GO sub-category is represented by a text file that contains annotation information and a list of the HUGO symbols of the genes assigned to that sub-category or any of its descendants. You don''''t need to download L2L to use it to analyze your microarray data. There is an easy-to-use web-based analysis tool, and you have the option of downloading your results so you can view them at any time on your own computer, using any web browser. However, if you prefer, the entire L2L project, and all of its components, can be downloaded from the download page. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: L2L Microarray Analysis Tool (RRID:SCR_013440) Copy   


http://www.nitrc.org/projects/nusdast

A repository of schizophrenia neuroimaging data collected from over 450 individuals with schizophrenia, healthy controls and their respective siblings, most with 2-year longitudinal follow-up. The data include neuroimaging data, cognitive data, clinical data, and genetic data.

Proper citation: Northwestern University Schizophrenia Data and Software Tool (NUSDAST) (RRID:SCR_014153) Copy   


  • RRID:SCR_004182

    This resource has 1+ mentions.

http://avis.princeton.edu/pixie/index.php

bioPIXIE is a general system for discovery of biological networks through integration of diverse genome-wide functional data. This novel system for biological data integration and visualization, allows you to discover interaction networks and pathways in which your gene(s) (e.g. BNI1, YFL039C) of interest participate. The system is based on a Bayesian algorithm for identification of biological networks based on integrated diverse genomic data. To start using bioPIXIE, enter your genes of interest into the search box. You can use ORF names or aliases. If you enter multiple genes, they can be separated by commas or returns. Press ''submit''. bioPIXIE uses a probabilistic Bayesian algorithm to identify genes that are most likely to be in the same pathway/functional neighborhood as your genes of interest. It then displays biological network for the resulting genes as a graph. The nodes in the graph are genes (clicking on each node will bring up SGD page for that gene) and edges are interactions (clicking on each edge will show evidence used to predict this interaction). Most likely, the first results to load on the results page will be a list of significant Gene Ontology terms. This list is calculated for the genes in the biological network created by the bioPIXIE algorithm. If a gene ontology term appears on this list with a low p-value, it is statistically significantly overrepresented in this biological network. As you move the mouse over genes in the network, interactions involving these genes are highlighted. If you click on any of the highlighted interactions graph, evidence pop-up window will appear. The Evidence pop-up lists all evidence for this interaction, with links to the papers that produced this evidence - clicking these links will bring up the relevant source citation(s) in PubMed. You may need to download the Adobe Scalable Vector Graphic (SVG) plugin to utilize the visualization tool (you will be prompted if you need it).

Proper citation: bioPIXIE (RRID:SCR_004182) Copy   


  • RRID:SCR_004450

    This resource has 50+ mentions.

http://www.ebi.ac.uk/thornton-srv/databases/profunc/index.html

The ProFunc server had been developed to help identify the likely biochemical function of a protein from its three-dimensional structure. It uses both sequence- and structure-based methods including fold matching, residue conservation, surface cleft analysis, and functional 3D templates, to identify both the protein''''s likely active site and possible homologues in the PDB. Often, where one method fails to provide any functional insight another may be more helpful. You can submit your own structure, analyze an existing PDB entry, or retrieve the results of a previously submitted run. The files are usually stored for about 6 months before being deleted. However, they are stored on a partition that is not backed up; so, in principle, they could disappear at any time.

Proper citation: ProFunc (RRID:SCR_004450) Copy   


http://murphylab.web.cmu.edu/services/SLIF/

SLIF finds fluorescence microscope images in on-line journal articles, and indexes them according to cell line, proteins visualized, and resolution. Images can be accessed via the SLIF Web database. SLIF takes on-line papers and scans them for figures that contain fluorescence microscope images (FMIs). Figures typically contain multiple FMIs, to SLIF must segment these images into individual FMIs. When the FMI images are extracted, annotations for the images (for instance, names of proteins and cell-lines) are also extracted from the accompanying caption text. Protein annotation are also used to link to external databases, such as the Gene Ontology DB. The more detailed process includes: segmentation of images into panels; panel classification, to find FMIs; segmentation of the caption, to find which portions of the caption apply to which panels; text-based entity extraction; matching of extracted entities to database entries; extraction of panel labels from text and figures; and alignment of the text segments to the panels. Extracted FMIs are processed to find subcellular location features (SLFs), and the resulting analyzed, annotated figures are stored in a database, which is accessible via SQL queries.

Proper citation: Subcellular Location Image Finder (RRID:SCR_006723) Copy   


  • RRID:SCR_017496

    This resource has 100+ mentions.

http://www.mirtoolsgallery.org/miRToolsGallery/node/1055

Comprehensive resource of microRNA target predictions and expression profiles. Used for whole genome prediction of miRNA target genes. For each miRNA, target genes are selected on basis of sequence complementarity using position weighted local alignment algorithm, free energies of RNA-RNA duplexes, and conservation of target sites in related genomes. Provides information about set of genes potentially regulated by particular microRNA, co-occurrence of predicted target sites for multiple microRNAs in mRNA and microRNA expression profiles in tissues. Users are allowed to customize algorithm, numerical parameters, and position-specific rules., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: miRanda (RRID:SCR_017496) Copy   


  • RRID:SCR_017236

    This resource has 100+ mentions.

http://cisbp.ccbr.utoronto.ca

Software tool as catalog of inferred sequence binding preferences. Online library of transcription factors and their DNA binding motifs.

Proper citation: CIS-BP (RRID:SCR_017236) Copy   


  • RRID:SCR_000424

    This resource has 1+ mentions.

http://www.sci.utah.edu/cibc/software/131-shapeworks.html

THIS RESOURCE IS NO LONGER IN SERVICE.Documented on September 2, 2022. Software that is an open-source distribution of a new method for constructing compact statistical point-based models of ensembles of similar shapes that does not rely on any specific surface parameterization. The method requires very little preprocessing or parameter tuning, and is applicable to a wide range of shape analysis problems, including nonmanifold surfaces and objects of arbitrary topology. The proposed correspondence point optimization uses an entropy-based minimization that balances the simplicity of the model (compactness) with the accuracy of the surface representations. The ShapeWorks software includes tools for preprocessing data, computing point-based shape models, and visualizing the results.

Proper citation: ShapeWorks (RRID:SCR_000424) Copy   


http://ccr.coriell.org/Sections/Collections/NIGMS/?SsId=8

Highly characterized cell lines and high quality DNA for cell and genetic research representing a variety of disease states, chromosomal abnormalities, apparently healthy individuals and many distinct human populations. The NIGMS Repository contains more than 10,600 cell lines, primarily fibroblasts and transformed lymphoblasts, and over 5,500 DNA samples. The NIGMS Repository has a major emphasis on heritable diseases and chromosomally aberrant cell lines. In addition, it contains a large collection dedicated to understanding human variation that includes samples from populations around the world, the CEPH collection, the Polymorphism Discovery Resource, and many apparently healthy controls. Human induced pluripotent stem cell lines, many of which were derived from NIGMS Repository fibroblasts, have recently become available through the NIGMS Repository. Sample donation facilitates all areas of research by making available well-characterized materials to any qualified researcher who might have otherwise been unable to invest the time and resources to collect needed samples independently. Donations to the Repository have created a resource of unparalleled scope. Samples from the collection have been used in more than 5,500 publications and are distributed to scientists in more than 50 countries. This resource is continuously expanding to support new directions in human genetics.

Proper citation: NIGMS Human Genetic Cell Repository (RRID:SCR_004517) Copy   


  • RRID:SCR_022286

    This resource has 1+ mentions.

https://github.com/RabadanLab/arcasHLA

Software tool for high resolution HLA typing from RNAseq. Fast and accurate in silico inference of HLA genotypes from RNA-seq.

Proper citation: arcasHLA (RRID:SCR_022286) Copy   


  • RRID:SCR_021890

    This resource has 10+ mentions.

https://www.utsouthwestern.edu/labs/danuser/software/

Software package as quantitative image analysis software for measurement of microtubule dynamics. MATLAB software for tracking full dynamics of microtubules based on plusTIP marker live cell image sequences.

Proper citation: plusTipTracker (RRID:SCR_021890) Copy   


  • RRID:SCR_002134

    This resource has 1000+ mentions.

http://wikipathways.org/

Open and collaborative platform dedicated to curation of biological pathways. Each pathway has dedicated wiki page, displaying current diagram, description, references, download options, version history, and component gene and protein lists. Database of biological pathways maintained by and for scientific community.

Proper citation: WikiPathways (RRID:SCR_002134) Copy   


  • RRID:SCR_023656

    This resource has 1+ mentions.

https://github.com/vpc-ccg/svict

Software tool for detecting structural variations from cell free DNA containing low dilutions of circulating tumor DNA.

Proper citation: SViCT (RRID:SCR_023656) Copy   


  • RRID:SCR_023777

    This resource has 50+ mentions.

https://www.crisprscan.org/

Web tool for predictive sgRNA-scoring that captures sequence features affecting Cas9/sgRNA activity in vivo. Scoring algorithm to help select the best gRNAs for CRISPR.

Proper citation: CRISPRscan (RRID:SCR_023777) Copy   


  • RRID:SCR_023789

    This resource has 10+ mentions.

https://pathvisio.org/

Software visualization tool for biological pathways. Pathway analysis and drawing software which allows drawing, editing, and analyzing biological pathways. Developed in Java and can be extended with plugins.

Proper citation: PathVisio (RRID:SCR_023789) Copy   


  • RRID:SCR_024682

https://github.com/katiasmirn/PERFect#perfect-permutation-filtering-package-in-r

Software R package as filtering test for microbiome data. Permutation filtering approach to address two unsolved problems in microbiome data processing: (i) define and quantify loss due to filtering by implementing thresholds and (ii) introduce and evaluate a permutation test for filtering loss to provide a measure of excessive filtering.

Proper citation: PERFect (RRID:SCR_024682) Copy   


  • RRID:SCR_001200

    This resource has 1+ mentions.

http://sourceforge.net/apps/mediawiki/mummergpu/index.php?title=MUMmerGPU

Software tool as high throughput DNA sequence alignment program that runs on nVidia G80-class GPUs. Aligns sequences in parallel on video card to accelerate widely used serial CPU program MUMmer.

Proper citation: MUMmerGPU (RRID:SCR_001200) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X