Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 out of 284 results
Snippet view Table view Download 284 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_004830

    This resource has 50+ mentions.

http://humanconnectome.org/connectome/connectomeDB.html

Data management platform that houses all data generated by the Human Connectome Project - image data, clinical evaluations, behavioral data and more. ConnectomeDB stores raw image data, as well as results of analysis and processing pipelines. Using the ConnectomeDB infrastructure, research centers will be also able to manage Connectome-like projects, including data upload and entry, quality control, processing pipelines, and data distribution. ConnectomeDB is designed to be a data-mining tool, that allows users to generate and test hypotheses based on groups of subjects. Using the ConnectomeDB interface, users can easily search, browse and filter large amounts of subject data, and download necessary files for many kinds of analysis. ConnectomeDB is designed to work seamlessly with Connectome Workbench, an interactive, multidimensional visualization platform designed specifically for handling connectivity data. De-identified data within ConnectomeDB is publicly accessible. Access to additional data may be available to qualified research investigators. ConnectomeDB is being hosted on a BlueArc storage platform housed at Washington University through the year 2020. This data platform is based on XNAT, an open-source image informatics software toolkit developed by the NRG at Washington University. ConnectomeDB itself is fully open source.

Proper citation: ConnectomeDB (RRID:SCR_004830) Copy   


  • RRID:SCR_006708

    This resource has 1+ mentions.

http://www.armystarrs.org/

Study of mental health risk and resilience factors ever conducted among military personnel. The purpose of Army STARRS is to identify as quickly as possible factors that protect or pose risks to Soldiers'' emotional well-being and overall mental health so that the Army may apply the knowledge to its ongoing health promotion, risk reduction, and suicide prevention efforts. Army STARRS investigators will use four separate study components the Historical Data Study, New Soldier Study, All Army Study, and Soldier Health Outcomes Study to identify factors that help protect a Soldier''s mental health and factors that put a Soldier''s mental health at risk. Army STARRS is a five-year study that will run through 2014. Findings will be reported as they become available, so that the Army may apply them to its ongoing health promotion, risk reduction, and suicide prevention efforts. Given its length and scope, Army STARRS will generate a vast amount of information and will allow investigators to focus on periods in a military career that are known to be high risk for psychological problems. The information gathered from volunteer participants throughout the study will help researchers identify not only potentially relevant risk factors, but potential protective factors as well. Because promoting mental health and reducing suicide risk are important for all Americans, the findings from Army STARRS will benefit not only servicemembers but the nation as a whole. NIMH has assembled a group of renowned experts to carry out this research including teams from the Uniformed Services University of the Health Sciences (USUHS), the University of California, San Diego, University of Michigan, Harvard Medical School, and NIMH. Additional Army and NIMH program staff will contribute to the oversight and implementation of the study. This research team brings together international leaders in military health, health and behavior surveys, epidemiology, suicide, and genetic and neurobiological factors involved in psychological health.

Proper citation: Army STARRS (RRID:SCR_006708) Copy   


http://www.nimh.nih.gov/funding/clinical-trials-for-researchers/practical/step-bd/index.shtml

A long-term outpatient study designed to find out which treatments, or combinations of treatments, are most effective for treating episodes of depression and mania and for preventing recurrent episodes in people with bipolar disorder. This study has been completed. (2005) STEP-BD is evaluating all the best-practice treatment options used for bipolar disorder: mood-stabilizing medications, antidepressants, atypical antipsychotics, and psychosocial interventions - or talk therapies - including Cognitive Behavioral Therapy, Family-focused Therapy, Interpersonal and Social Rhythm Therapy, and Collaborative Care (psychoeducation). There are two kinds of treatment pathways in STEP-BD, and participants may have the opportunity to take part in both. The medications and psychosocial interventions provided in these pathways are considered among the best choices of treatment for bipolar disorder in everyday clinical practice. In the Best Practice Pathway, participants are followed by a STEP-BD certified doctor and all treatment choices are individualized. Everyone enrolled in STEP-BD may participate in this pathway. Participants and their doctors work together to decide on the best treatment plans and to change these plans if needed. Also, anyone who wishes to stay on his or her current treatment upon entering STEP-BD may do so in this pathway. Adolescents and adults age 15 years and older may participate in the Best Practice Pathway. For adults age 18 and older, another way to participate is in the STEP-BD Randomized Care Pathways. Depending on their symptoms, participants may be offered treatment in one or more of these pathways during the course of the study. The participants remain on mood-stabilizing medication. However, because doctors are uncertain which of several treatment strategies work best for bipolar disorder, another medication and/or talk therapy may be added. Each Randomized Care Pathway involves a different set of these additional treatments. Unlike in the Best Practice Pathway, the participants in the Randomized Care Pathways are randomly assigned to treatments. Also, in some cases, neither the participant nor the doctor will be told which of the different medications is being added. This is called a double-blind study and is done so that the medication effects can be evaluated objectively, without any unintended bias that may come from knowing what has been assigned. Participants will not be assigned medications that they have had bad reactions to in the past, that they are strongly opposed to, or that the doctor feels are unsuitable for them. The medication(s) participants may be randomly assigned to in the Randomized Care Pathways are free of charge. There are other treatment options for participants if they do not respond well to the treatment assigned to them. Also, participants may return to the Best Practice Pathway at any time. About 1,500 individuals will be enrolled in at least one Randomized Care Pathway during their period of participation in STEP-BD. It is important to note that STEP-BD provides continuity of care. For example, if a participant starts out in the Best Practice Pathway and later chooses to enter one of the Randomized Care Pathways, he or she continues with the same STEP-BD doctor and treatment team. Then, after completing the Randomized Care Pathway, the participant may return to the Best Practice Pathway for ongoing, individually-tailored treatment. Follow the link to view study info at Clinicaltrials.gov, http://www.clinicaltrials.gov/ct/show/NCT00012558?order=1

Proper citation: Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) (RRID:SCR_008844) Copy   


http://research.mssm.edu/cnic/

Center to advance research and training in mathematical, computational and modern imaging approaches to understanding the brain and its functions. Software tools and associated reconstruction data produced in the center are available. Researchers study the relationships between neural function and structure at levels ranging from the molecular and cellular, through network organization of the brain. This involves the development of new computational and analytic tools for imaging and visualization of 3-D neural morphology, from the gross topologic characteristics of the dendritic arbor to the fine structure of spines and their synapses. Numerical simulations of neural mechanisms based on these structural data are compared with in-vivo and in-vitro electrophysiological recordings. The group also develops new theoretical and analytic approaches to exploring the function of neural models of working memory. The goal of this analytic work is to combine biophysically realistic models and simulations with reduced mathematical models that capture essential dynamical behaviors while reproducing the functionally important features of experimental data. Research areas include: Imaging Studies, Volume Integration, Visualization Techniques, Medial Axis Extraction, Spine Detection and Classification, Applications of Rayburst, Analysis of Spatially Complex Structures, Computational Modeling, Mathematical and Analytic Studies

Proper citation: Computational Neurobiology and Imaging Center (RRID:SCR_013317) Copy   


http://interactome.baderlab.org/

Project portal for the Human Reference Protein Interactome Project, which aims generate a first reference map of the human protein-protein interactome network by identifying binary protein-protein interactions (PPIs). It achieves this by systematically interrogating all pairwise combinations of predicted human protein-coding genes using proteome-scale technologies.

Proper citation: Human Reference Protein Interactome Project (RRID:SCR_015670) Copy   


http://www.oasis-brains.org/

Project aimed at making neuroimaging data sets of brain freely available to scientific community. By compiling and freely distributing neuroimaging data sets, future discoveries in basic and clinical neuroscience are facilitated.

Proper citation: Open Access Series of Imaging Studies (RRID:SCR_007385) Copy   


  • RRID:SCR_007286

    This resource has 1+ mentions.

http://senselab.med.yale.edu/odordb

OdorDb is a database of odorant molecules, which can be searched in a few different ways. One can see odorant molecules in the OdorDB, and the olfactory receptors in ORDB that they experimentally shown to bind. You can search for odorant molecules based on their attributes or identities: Molecular Formula, Chemical Abstracts Service (CAS) Number and Chemical Class. Functional studies of olfactory receptors involve their interactions with odor molecules. OdorDB contains a list of odors that have been identified as binding to olfactory receptors.

Proper citation: Odor Molecules DataBase (RRID:SCR_007286) Copy   


http://senselab.med.yale.edu/odormapdb

OdorMapDB is designed to be a database to support the experimental analysis of the molecular and functional organization of the olfactory bulb and its basis for the perception of smell. It is primarily concerned with archiving, searching and analyzing maps of the olfactory bulb generated by different methods. The first aim is to facilitate comparison of activity patterns elicited by odor stimulation in the glomerular layer obtained by different methods in different species. It is further aimed at facilitating comparison of these maps with molecular maps of the projections of olfactory receptor neuron subsets to different glomeruli, especially for gene targeted animals and for antibody staining. The main maps archived here are based on original studies using 2-deoxyglucose and on current studies using high resolution fMRI in mouse and rat. Links are also provided to sites containing maps by other laboratories. OdorMapDB thus serves as a nodal point in a multilaboratory effort to construct consensus maps integrating data from different methodological approaches. OdorMapDB is integrated with two other databases in SenseLab: ORDB, a database of olfactory receptor genes and proteins, and OdorDB, a database of odor molecules that serve as ligands for the olfactory receptor proteins. The combined use of the three integrated databases allows the user to identify odor ligands that activate olfactory receptors that project to specific glomeruli that are involved in generating the odor activity maps.

Proper citation: Olfactory Bulb Odor Map DataBase (OdorMapDB) (RRID:SCR_007287) Copy   


  • RRID:SCR_022795

https://cloudreg.neurodata.io/

Software automated, terascale, cloud based image analysis pipeline for preprocessing and cross modal, nonlinear registration between volumetric datasets with artifacts. Automatic terabyte scale cross modal brain volume registration.

Proper citation: CloudReg (RRID:SCR_022795) Copy   


http://www.ccnmd.pitt.edu/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 16,2023. Conte Center for the Neuroscience of Mental Disorders (CCNMD) at the University of Pittsburgh offers a highly interactive scientific environment for the study of the neurobiology of schizophrenia. Integrates the laboratory and clinical research activities of investigators from the University of Pittsburgh Schools of Medicine and Arts and Sciences and the adjacent Carnegie Mellon University.

Proper citation: University of Pittsburgh Conte Center for the Neuroscience of Mental Disorders (RRID:SCR_000014) Copy   


  • RRID:SCR_001551

    This resource has 10+ mentions.

http://proteomics.ucsd.edu/Software/NeuroPedia/index.html

A neuropeptide encyclopedia of peptide sequences (including genomic and taxonomic information) and spectral libraries of identified MS/MS spectra of homolog neuropeptides from multiple species.

Proper citation: NeuroPedia (RRID:SCR_001551) Copy   


https://clinicaltrials.gov/ct2/show/NCT00014001

The NIMH-funded Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Study was a nationwide public health-focused clinical trial that compared the effectiveness of older (first available in the 1950s) and newer (available since the 1990s) antipsychotic medications used to treat schizophrenia. These newer medications, known as atypical antipsychotics, cost roughly 10 times as much as the older medications. CATIE is the largest, longest, and most comprehensive independent trial ever done to examine existing therapies for this disease. Schizophrenia is a brain disorder characterized by hallucinations, delusions, and disordered thinking. The course of schizophrenia is variable, but usually is recurrent and chronic, often causing severe disability. Previous studies have shown that taking antipsychotic medications consistently is far more effective than taking no medicine and that the drugs are necessary to manage the disease. The aim of the CATIE study was to determine which medications provide the best treatment for schizophrenia. Additional information may be found by following the links, http://www.nimh.nih.gov/trials/practical/catie/index.shtml, http://www.clinicaltrials.gov/ct/show/NCT00014001?order=1

Proper citation: CATIE - Clinical Antipsychotic Trials in Intervention Effectiveness (RRID:SCR_005615) Copy   


http://www.agre.org/index.cfm

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. A private repository of clinical and genetic information on families with autism. Genetic and clinical data are obtained from families that have more than one family member diagnosed with an Autism Spectrum Disorder. The biological samples, along with the accompanying clinical data, are made available to AGRE-approved researchers worldwide. As they become available, additional family pedigrees will be posted in the online catalog. Cell lines have been established for the majority of families in this collection and serum/plasma is available on a subset of the subjects until stocks are depleted. The diagnosis of autism has been made using the standard Autism Diagnostic Interview-Revised (ADI-R) algorithm and the Autism Diagnostic Observation Scale (ADOS-G). Detailed birth and medical histories (including basic dysmorphology assessments) on children as well as family and medical information for parents and unaffected siblings, are available for nearly all families. DNA, cell lines, serum, plasma and clinical information are made available to AGRE-approved researchers for analysis.

Proper citation: Autism Genetic Resource Exchange (RRID:SCR_004403) Copy   


  • RRID:SCR_008819

    This resource has 1+ mentions.

http://HIVBrainSeqDB.org

The HIV Brain Sequence Database (HIVBrainSeqDB) is a public database of HIV envelope sequences, directly sequenced from brain and other tissues from the same patients. For inclusion in the database, sequences must: (i) be deposited in Genbank; (ii) include some portion of the HIV env region; (iii) be clonal, amplified directly from tissue; and (iv) be sampled from the brain, or sampled from a patient for which the database already contains brain sequence. Sequences are annotated with clinical data including viral load, CD4 count, antiretroviral status, neurocognitive impairment, and neuropathological diagnosis, all curated from the original publication. Tissue source is coded using an anatomical ontology, the Foundational Model of Anatomy, to capture the maximum level of detail available, while maintaining ontological relationships between tissues and their subparts. 44 tissue types are represented within the database, grouped into 4 categories: (i) brain, brainstem, and spinal cord; (ii) meninges, choroid plexus, and CSF; (iii) blood and lymphoid; and (iv) other (bone marrow, colon, lung, liver, etc). Currently, the database contains 2517 envelope sequences from 90 patients, obtained from 22 published studies. 1272 sequences are from brain; the remaining 1245 are from blood, lymph node, spleen, bone marrow, colon, lung and other non-brain tissues. The database interface utilizes a faceted interface, allowing real-time combination of multiple search parameters to assemble a meta-dataset, which can be downloaded for further analysis. This online resource will greatly facilitate analysis of the genetic aspects of HIV macrophage tropism, HIV compartmentalization and evolution within the brain and other tissue reservoirs, and the relationship of these findings to HIV-associated neurological disorders and other clinical consequences of HIV infection.

Proper citation: HIV Brain Sequence Database (RRID:SCR_008819) Copy   


http://neuromorphometrics.com/?page_id=23

Collection of neuroanatomically labeled MRI brain scans, created by neuroanatomical experts. Regions of interest include the sub-cortical structures (thalamus, caudate, putamen, hippocampus, etc), along with ventricles, brain stem, cerebellum, and gray and white matter and sub-divided cortex into parcellation units that are defined by gyral and sulcal landmarks.

Proper citation: Manually Labeled MRI Brain Scan Database (RRID:SCR_009604) Copy   


  • RRID:SCR_013742

    This resource has 50+ mentions.

http://hbatlas.org

A data repository containing transcriptome and associated metadata for the developing and adult human brain. It provides genome-wide, exon-level transcriptome data from both sexes and multiple ethnicities.

Proper citation: Human Brain Transcriptome (RRID:SCR_013742) Copy   


http://kimlab.io/brain-map/atlas/

Website to visualize and share anatomical labels. Franklin and Paxinos (FP) based anatomical labels in Allen Common Coordinate Framework (CCF). Cell type specific transgenic mice and MRI atlas were used to adjust and further segment labels. New segmentations were created in dorsal striatum using cortico-striatal connectivity data. Anatomical labels were digitized based on Allen ontology, and web-interface was created for easy visualization. These labels provide resource to isolate and identify mouse brain anatomical structures. Open source data sharing will facilitate further refinement of anatomical labels and integration of data interpretation within single anatomical platform.

Proper citation: Enhanced and Unified Anatomical Labeling for Common Mouse Brain Atlas (RRID:SCR_019267) Copy   


  • RRID:SCR_014937

    This resource has 10+ mentions.

http://becs.aalto.fi/en/research/bayes/drifter/

Model based Bayesian method for eliminating physiological noise from fMRI data. This algorithm uses image voxel analysis to isolate the cardiac and respiratory noise from the relevant data.

Proper citation: DRIFTER (RRID:SCR_014937) Copy   


  • RRID:SCR_013152

    This resource has 10+ mentions.

http://surfer.nmr.mgh.harvard.edu/fswiki/Tracula

Software tool developed for automatically reconstructing a set of major white matter pathways in the brain from diffusion weighted images using probabilistic tractography. This method utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual intervention with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. The trac-all script is used to preprocess raw diffusion data (correcting for eddy current distortion and B0 field inhomogenities), register them to common spaces, model and reconstruct major white matter pathways (included in the atlas) without any manual intervention. trac-all may be used to execute all the above steps or parts of it depending on the dataset and user''''s preference for analyzing diffusion data. Alternatively, scripts exist to execute chunks of each processing pipeline, and individual commands may be run to execute a single processing step. To explore all the options in running trac-all please refer to the trac-all wiki. In order to use this script to reconstruct tracts in Diffusion images, all the subjects in the dataset must have Freesurfer Recons.

Proper citation: TRACULA (RRID:SCR_013152) Copy   


  • RRID:SCR_014185

    This resource has 1+ mentions.

http://www.nitrc.org/projects/caworks

A software application developed to support computational anatomy and shape analysis. The capabilities of CAWorks include: interactive landmark placement to create segmentation (mask) of desired region of interest; specialized landmark placement plugins for subcortical structures such as hippocampus and amygdala; support for multiple Medical Imaging data formats, such as Nifti, Analyze, Freesurfer, DICOM and landmark data; Quadra Planar view visualization; and shape analysis plugin modules, such as Large Deformation Diffeomorphic Metric Mapping (LDDMM). Specific plugins are available for landmark placement of the hippocampus, amygdala and entorhinal cortex regions, as well as a browser plugin module for the Extensible Neuroimaging Archive Toolkit.

Proper citation: CAWorks (RRID:SCR_014185) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X