Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. Friend is a bioinformatics application designed for simultaneous analysis and visualization of multiple structures and sequences of proteins and/or DNA/RNA. The application provides basic functionalities such as: structure visualization with different rendering and coloring, sequence alignment, and simple phylogeny analysis, along with a number of extended features to perform more complex analyses of sequence structure relationships, including: structural alignment of proteins, investigation of specific interaction motifs, studies of protein-protein and protein-DNA interactions, and protein super-families. Friend is also useful for the functional annotation of proteins, protein modeling, and protein folding studies. Friend provides three levels of usage; 1) an extensive GUI for a scientist with no programming experience, 2) a command line interface for scripting for a scientist with some programming experience, and 3) the ability to extend Friend with user written libraries for an experienced programmer. The application is linked and communicates with local and remote sequence and structure databases.
Proper citation: An Integrated Multiple Structure Visualization and Multiple Sequence Alignment Application (RRID:SCR_001646) Copy
http://surfer.nmr.mgh.harvard.edu/
Open source software suite for processing and analyzing human brain MRI images. Used for reconstruction of brain cortical surface from structural MRI data, and overlay of functional MRI data onto reconstructed surface. Contains automatic structural imaging stream for processing cross sectional and longitudinal data. Provides anatomical analysis tools, including: representation of cortical surface between white and gray matter, representation of the pial surface, segmentation of white matter from rest of brain, skull stripping, B1 bias field correction, nonlinear registration of cortical surface of individual with stereotaxic atlas, labeling of regions of cortical surface, statistical analysis of group morphometry differences, and labeling of subcortical brain structures.Operating System: Linux, macOS.
Proper citation: FreeSurfer (RRID:SCR_001847) Copy
http://www.nesys.uio.no/Atlas3D/
A multi-platform visualization tool which allows import and visualization of 3-D atlas structures in combination with tomographic and histological image data. The tool allows visualization and analysis of the reconstructed atlas framework, surface modeling and rotation of selected structures, user-defined slicing at any chosen angle, and import of data produced by the user for merging with the atlas framework. Tomographic image data in NIfTI (Neuroimaging Informatics Technology Initiative) file format, VRML and PNG files can be imported and visualized within the atlas framework. XYZ coordinate lists are also supported. Atlases that are available with the tool include mouse brain structures (3-D reconstructed from The Mouse Brain in Stereotaxic Coordinates by Paxinos and Franklin (2001)) and rat brain structures (3-D reconstructed from The Rat Brain in Stereotaxic Coordinates by Paxinos and Watson (2005)). Experimental data can be imported in Atlas3D and warped to atlas space, using manual linear registration, with the possibility to scale, rotate, and position the imported data. This facilitates assignment of location and comparative analysis of signal location in tomographic images.
Proper citation: Atlas3D (RRID:SCR_001808) Copy
http://microarrays.curie.fr/publications/U900-RPPA_PLT/Normacurve/
Analysis methodology that allows simultaneous quantification and normalization of reverse phase protein array (RPPA) data.
Proper citation: NormaCurve (RRID:SCR_001995) Copy
http://icahn.mssm.edu/research/resources/shared-resource-facilities/in-vivo-molecular-imaging
The In-Vivo Molecular Imaging Laboratory (IMIL) is a MSSM shared resource facility serving the research community of Mount Sinai with equipment and imaging expertise. State-of-the-art bioluminescent as well as fluorescent imaging modalities are supported for in-vivo monitoring of cellular and genetic activity. Investigators are provided with cutting edge imaging technologies as well as analysis techniques. The long-term goal is to establish a comprehensive SRF for in-vivo molecular imaging using micro-MRI, micro-PET and other modalities. IMIL houses a Xenogen IVIS-200 Series imaging system with the integrated fluorescent imaging options. Simultaneous dual reporter in-vivo imaging is possible with bioluminescence and fluorescence probes. The imaging chamber has a gas anesthesia manifold that can accommodate up to 5 mice for simultaneously image acquisition. Selectable field of views allow in-plane (X,Y) imaging resolutions of up to 60-microm. Integrated spectra filters allow for the determination of signal source depth (Z). IMIL will provide data acquisition services as well as analysis. IMIL has a dedicated imaging technologist for data acquisition. Investigators will bring their prepared animal to the lab and an IMIL imaging technologist will assist in sedating the animals and acquire imaging data. Typical imaging sessions last about an hour. Certified users who are trained in the use of the software will be able to perform their own analysis at the console. Usage of the imaging device is charged by the hour ($100/hour). Structural Imaging The IVIS-200 has the built-in capability of obtaining an image of the surface topography of the animal for 2D and 3D localization. If additional true 3D imaging data is required, micro MRI is available through the Imaging Science Laboratories (ISL). Image Analysis The IVIS-200 has an integrated image acquisition and analysis software (Living Image Software 2.50). Comprehensive data quantification is possible with this software. Raw data as well as analyzed results can be electronically transferred to the investigators. Support is also available for additional image analysis such as intermodality coregistration, 3D rendering, and group statistics. Additional software packages include MedX, SPM, Brainvoyager, Analyze, and in-house developed software.
Proper citation: Mount Sinai School of Medicine: In-Vivo Molecular Imaging Laboratory (RRID:SCR_001785) Copy
Suite of motif-based sequence analysis tools to discover motifs using MEME, DREME (DNA only) or GLAM2 on groups of related DNA or protein sequences; search sequence databases with motifs using MAST, FIMO, MCAST or GLAM2SCAN; compare a motif to all motifs in a database of motifs; associate motifs with Gene Ontology terms via their putative target genes, and analyze motif enrichment using SpaMo or CentriMo. Source code, binaries and a web server are freely available for noncommercial use.
Proper citation: MEME Suite - Motif-based sequence analysis tools (RRID:SCR_001783) Copy
http://www.nesys.uio.no/Micro3D/
The Micro3D 2004 is a software for 3-D reconstruction, visualization, and analysis of neuronal populations and brain regions. Micro3D generates geometric models from line and point coded data sets, representing labeled objects such as cell bodies or axonal plexuses, and boundaries of brain regions in serial sections. Data are typically imported from image-combining computerized microscopy systems, such as Neurolucida (MicroBrightField, Colchester, VT). The models may be rotated and zoomed in real-time. Surfaces are re-synthesized on the basis of stacks of contour lines. Clipping is used for defining section-independent subdivisions of the model. Flattening of sheets of points in curved layers (e.g., neurons in a cortical lamina) facilitates inspection of complicated distribution patterns. Micro3D computes color-coded density maps, and allows production of mpeg videos. Micro3D 2004 runs on LINUX PCs equipped with Open Inventor. It performs operations similar to the Silicon Graphics based version that has been used in more than 25 investigations and in various species, ranging from insects to monkeys, at the LM- and EM-level. Sponsors:Micro 3D was developed with support from The Research Council of Norway and The Oslo Research Park / FORNY.
Proper citation: Neural Systems and Graphics Computing Laboratory: Micro3D Software (RRID:SCR_001811) Copy
http://www.nitrc.org/projects/voxbo
Software package for brain image manipulation and analysis, focusing on fMRI and lesion analysis. VoxBo can be used independently or in conjunction with other packages. It provides GLM-based statistical tools, an architecture for interoperability with other tools (they encourage users to incorporate SPM and FSL into their processing pipelines), an automation system, a system for parallel distributed computing, numerous stand-alone tools, decent wiki-based documentation, and lots more.
Proper citation: VoxBo (RRID:SCR_002166) Copy
http://www.mevislab.de/index.php?id=6
Modular framework for the development of image processing algorithms and visualization and interaction methods, with a special focus on medical imaging. It includes advanced medical imaging modules for segmentation, registration, volumetry, and quantitative morphological and functional analysis. The platform allows fast integration and testing of new algorithms and the development of application prototypes that can be used in clinical environments. In MeVisLab, individual image processing, visualization and interaction modules can be combined to complex image processing networks using a graphical programming approach. The algorithms can easily be integrated using a modular, platform-independent C++ class library. An abstract, hierarchical definition language allows the design of efficient graphical user interfaces, hiding the complexity of the underlying module network to the end user. JavaScript components can be added to implement dynamic functionality on both the network and the user interface level. MeVisLab is based on the Qt application framework, the OpenInventor 3D visualization toolkit and OpenGL. Several clinical prototypes have been realized on the basis of MeVisLab, including software assistants for neuro-imaging, dynamic image analysis, surgery planning, and vessel analysis. Feature Overview: :- Basic image processing algorithms and advanced medical imaging modules :- Full featured, flexible 2D/3D visualization and interaction tools :- High performance for large datasets :- Modular, expandable C++ image processing library :- Graphical programming of complex, hierarchical module networks :- Object-oriented GUI definition and scripting :- Full scripting functionality using Python and JavaScript :- DICOM support and PACS integration :- Intuitive user interface :- Integrated movie and screenshot generation for demonstration purposes :- Generic integration of the Insight Toolkit (ITK) and the Visualization Toolkit (VTK) :- Cross-platform support for Windows, Linux, and MacOS X :- Available for 64-bit operating systems
Proper citation: Medical Image Processing and Visualization (RRID:SCR_002055) Copy
GenMAPP is a free computer application designed to visualize gene expression and other genomic data on maps representing biological pathways and groupings of genes. Integrated with GenMAPP are programs to perform a global analysis of gene expression or genomic data in the context of hundreds of pathway MAPPs and thousands of Gene Ontology Terms (MAPPFinder), import lists of genes/proteins to build new MAPPs (MAPPBuilder), and export archives of MAPPs and expression/genomic data to the web. The main features underlying GenMAPP are: *Draw pathways with easy to use graphics tools *Color genes on MAPP files based on user-imported genomic data *Query data against MAPPs and the GeneOntology Enhanced features include the simultaneous view of multiple color sets, expanded species-specific gene databases and custom database options.
Proper citation: Gene Map Annotator and Pathway Profiler (RRID:SCR_005094) Copy
http://www.cma.mgh.harvard.edu/iatr/
A centrally available listing of all image analysis tools that are available to the neuroscience community in order to facilitate the development, identification, and sharing of tools. It is hoped that this helps the tool developers to get their tools to a larger user community and to reduce redundancy (or at least utilize tool redundancy to facilitate optimal tool design) in tool development. This also helps tool users in identification of the existing tools for specific problems as they arise. The registry is designed to be self-moderated. This means that all tool entries are owned by some responsible party who enters the tool information, and keeps it up to date via the Web.
Proper citation: Internet Analysis Tools Registry (RRID:SCR_005638) Copy
http://geneontology.svn.sourceforge.net/viewvc/geneontology/go-moose/
go-moose is intended as a replacement for the aging go-perl and go-db-perl Perl libraries. It is written using the object oriented Moose libraries. It can be used for performing a number of analyses on GO data, including the remapping of GO annotations to a selected subset of GO terms. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: go-moose (RRID:SCR_005666) Copy
A Web-based Tool for High-throughput Primer and Probe Design. The program has its different utilities available on its web server. A standalone version is also available. Algorithms: * SSPD - Sequence Specific Primer Design: to design primers for each of the specific sequences given by the user in the query input file against any alternate potential hybridization with any of the sequences given in the database input file. * PSPD - Probe Specific Primer Design: to design primers it selects the gene-specific fragments (probes) to design primer pairs for their PCR amplification. * FSPD Fragment Specific Primer Design: primer design algorithm used when there is a very long query sequence for which multiple primers are required for its amplification. * Check Binding Specificity * Probe Design Only: Probe design algorithm could be used to find sequence-specific probes, which doesn''t show any blast hit against database. Such probe design has been used for targeted sequencing like agilent sure-select technology with next-generation sequencing.
Proper citation: PRIMEGENS (RRID:SCR_005474) Copy
http://bowtie-bio.sourceforge.net/index.shtml
Software ultrafast memory efficient tool for aligning sequencing reads. Bowtie is short read aligner.
Proper citation: Bowtie (RRID:SCR_005476) Copy
http://www.ebi.ac.uk/Tools/pfa/iprscan/
Software package for functional analysis of sequences by classifying them into families and predicting presence of domains and sites. Scans sequences against InterPro's signatures. Characterizes nucleotide or protein function by matching it with models from several different databases. Used in large scale analysis of whole proteomes, genomes and metagenomes. Available as Web based version and standalone Perl version and SOAP Web Service.
Proper citation: InterProScan (RRID:SCR_005829) Copy
Data analysis service to predict the function of your favorite genes and gene sets. Indexing 1,421 association networks containing 266,984,699 interactions mapped to 155,238 genes from 7 organisms. GeneMANIA interaction networks are available for download in plain text format. GeneMANIA finds other genes that are related to a set of input genes, using a very large set of functional association data. Association data include protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. You can use GeneMANIA to find new members of a pathway or complex, find additional genes you may have missed in your screen or find new genes with a specific function, such as protein kinases. Your question is defined by the set of genes you input. If members of your gene list make up a protein complex, GeneMANIA will return more potential members of the protein complex. If you enter a gene list, GeneMANIA will return connections between your genes, within the selected datasets. GeneMANIA suggests annotations for genes based on Gene Ontology term enrichment of highly interacting genes with the gene of interest. GeneMANIA is also a gene recommendation system. GeneMANIA is also accessible via a Cytoscape plugin, designed for power users. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GeneMANIA (RRID:SCR_005709) Copy
http://estbioinfo.stat.ub.es/?page_id=2
The Statistics and Bioinformatics research group has as its main objectives the development of methods and tools to deal with problems appearing in the interface between Statistics and Bioinformatics. We started focusing in DNA microarrays but we are also interested in statistical methods for ''omics'' data integration and next generation sequencing (NGS). Our group collaborates with different research groups in the fields of biology and biomedicine, to whom it offers statistical support for problems which are specifically statistic in nature, such as experimental design or microarray data analysis, and also in more general aspects, such as modeling, analysis or data mining. After a first period of collaboration agreements with the Fundaci�� Vall d''Hebr��n Institut de Recerca we contributed to the creation of the Statistics and Bioinformatics Unit (UEB) which provides statistical and bioinformatical support to VHIR researchers.
Proper citation: University of Barcelona Statistics and Bioinformatics Research Group (RRID:SCR_005704) Copy
http://vortex.cs.wayne.edu/projects.htm#Onto-Translate
In the annotation world, the same piece of information can be stored and viewed differently across different databases. For instance, more than one Affymetrix probe ID can refer to the same GenBank sequence (accession number) and more than one nucleotide sequence from GenBank can be grouped in a single UniGene cluster. The result of Onto-Express depends on whether the input list contains Affymetrix probe IDs, GenBank accession numbers or UniGene cluster IDs. The user has to be aware of relations between the different forms of the data in order to interpret correctly the results. Even if the user is aware of the relationships and knows how to convert them, most existing tools allow conversions of individual genes. Onto-Translate is a tool that allows the user to perform easily such translations. Affymetrix probe IDs, etc., translate GO terms into other identifiers like GenBank accession number, Uniprot IDs. User account required. Platform: Online tool
Proper citation: Onto-Translate (RRID:SCR_005725) Copy
GOTaxExplorer presents a new approach to comparative genomics that integrates functional information and families with the taxonomic classification. It integrates UniProt, Gene Ontology, NCBI Taxonomy, Pfam and SMART in one database. GOTaxExplorer provides four different query types: selection of entity sets, comparison of sets of Pfam families, semantic comparison of sets of GO terms, functional comparison of sets of gene products. This permits to select custom sets of GO terms, families or taxonomic groups. For example, it is possible to compare arbitrarily selected organisms or groups of organisms from the taxonomic tree on the basis of the functionality of their genes. Furthermore, it enables to determine the distribution of specific molecular functions or protein families in the taxonomy. The comparison of sets of GO terms allows to assess the semantic similarity of two different GO terms. The functional comparison of gene products makes it possible to identify functionally equivalent and functionally related gene products from two organisms on the basis of GO annotations and a semantic similarity measure for GO. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GOTaxExplorer (RRID:SCR_005720) Copy
http://vortex.cs.wayne.edu/projects.htm#Onto-Miner
Onto-Miner (OM) provides a single and convenient interface that allows the user to interrogate our databases regarding annotations of known genes. OM will return all known information about a given list of genes. Advantages of OM include the fact it allows queries with multiple genes and allows for scripting. This is unlike GenBank which uses a single gene navigation process. Scripted search of the Onto-Tools database for gene annotations. User account required. Platform: Online tool
Proper citation: Onto-Miner (RRID:SCR_005722) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.