Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 out of 786 results
Snippet view Table view Download 786 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_014751

    This resource has 1+ mentions.

http://openneu.ro/metasearch

Web application search tool intended to help users find MRI data shared publicly on the Web, particularly from projects organized under the 1000 Functional Connectomes Project (FCP) and International Neuroimaging Data-sharing Initiative (INDI). Users can perform queries visually to select a cohort of participants with brain imaging data based on their demographics and phenotypic information and then link out to imaging measures.

Proper citation: MetaSearch (RRID:SCR_014751) Copy   


http://www.nitrc.org/projects/genr/

An MRI resource which provides age-appropriate images of children. It includes an average, age-appropriate T1-weighted image, constructed from 130 typically developing children ages 6-to-10 and a set of 32 resting-state ICA components. These components were generated from 494 typically developing children, ages 6-to-10 years old, using the MELODIC ICA tool, bootstrapped with 1000 resamples. Both of these resources are described in detail in a manuscript submitted for publication.

Proper citation: Generation R Pediatric MRI Resources (RRID:SCR_014114) Copy   


http://www.nitrc.org/projects/nihgrantees/

This project is meant for planning the NITRC Grantee meetings. A website for organizing meetings for the Neuroimaging Informatics Tools and Resources Clearinghouse, to facilitate participants meeting one another, and promote discussion of common interests and collaboration.

Proper citation: Grantees Meeting for NITRC (RRID:SCR_000419) Copy   


http://aimlab.cs.uoregon.edu/NEMO/web/

THIS RESOURCE IS NO LONGER IN SERVICE. NIH tombstone webpage lists Project Period : 2009 - 2013. NIH funded project to create EEG and MEG ontologies and ontology based tools. These resources will be used to support representation, classification, and meta-analysis of brain electromagnetic data. Three pillars of NEMO are: DATA, ONTOLOGY, and DATABASE. NEMO data consist of raw EEG, averaged EEG (ERPs), and ERP data analysis results. NEMO ontologies include concepts related to ERP data (including spatial and temporal features of ERP patterns), data provenance, and cognitive and linguistic paradigms that were used to collect data. NEMO database portal is large repository that stores NEMO consortium data, data analysis results, and data provenance. EEG and MEG ontologies and ontology-based tools to support representation, classification, and meta-analysis of brain electromagnetic data. Raw EEG and ERP data may be uploaded to the NEMO FTP site., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Neural ElectroMagnetic Ontologies (NEMO) Project (RRID:SCR_002001) Copy   


http://www.nitrc.org/projects/sri24/

An MRI-based atlas of normal adult human brain anatomy, generated by template-free nonrigid registration from images of 24 normal control subjects. The atlas comprises T1, T2, and PD weighted structural MRI, tissue probability maps (GM, WM, CSF), maximum-likelihood tissue segmentation, DTI-based measures (FA, MD, longitudinal and transversal diffusivity), and two labels maps of cortical regions and subcortical structures. The atlas is provided at 1mm isotropic image resolution in Analyze, NIFTI, and Nrrd format. We are also providing an experimental packaging for use with SPM8.

Proper citation: SRI24 Atlas: Normal Adult Brain Anatomy (RRID:SCR_002551) Copy   


  • RRID:SCR_002606

    This resource has 1+ mentions.

http://www.nitrc.org/projects/unc_brain_atlas

Human brain atlases for adult, pediatric and elderly populations, by iterative joint deformable registration of training datasets into a single unbiased average image. Atlases packages include T1-weighted images, tissue priors (WM,GM,CSF), lobar parcellation maps and subcortical structures. Current available atlases: * Adult atlas: Symmetric atlas generated from 50+ healthy adult subjects (20-59 year old). * UNC-MNI Pediatric 1-year-old atlas: Symmetric atlas generated from 104 1-year-old subjects, combining children at high familial risk of autism and controls. * Pediatric 4-year-old atlas: Symmetric atlas generated from 10 4-year-old healthy subjects. * Elderly atlas: Atlas generated from 27 healthy elderly subjects (60+ years old). Additional information and acknowledgment for their usage can be found by clicking on the release notes.

Proper citation: UNC Human Brain Atlas (RRID:SCR_002606) Copy   


  • RRID:SCR_004834

    This resource has 10+ mentions.

https://neuinfo.org/mynif/search.php?list=cover&q=*

Service that partners with the community to expose and simultaneously drill down into individual databases and data sets and return relevant content. This type of content, part of the so called hidden Web, is typically not indexed by existing web search engines. Every record links back to the originating site. In order for NIF to directly query these independently maintained databases and datasets, database providers must register their database or dataset with the NIF Data Federation and specify permissions. Databases are concept mapped for ease of sharing and to allow better understanding of the results. Learn more about registering your resource, http://neuinfo.org/nif_components/disco/interoperation.shtm Search results are displayed under the Data Federation tab and are categorized by data type and nervous system level. In this way, users can easily step through the content of multiple resources, all from the same interface. Each federated resource individually displays their query results with links back to the relevant datasets within the host resource. This allows users to take advantage of additional views on the data and tools that are available through the host database. The NIF site provides tutorials for each resource, indicated by the Professor Icon professor icon showing users how to navigate the results page once directed there through the NIF. Additionally, query results may be exported as an Excel document. Note: NIF is not responsible for the availability or content of these external sites, nor does NIF endorse, warrant or guarantee the products, services or information described or offered at these external sites. Integrated Databases: Theses virtual databases created by NIF and other partners combine related data indexed from multiple databases and combine them into one view for easier browsing. * Integrated Animal View * Integrated Brain Gene Expression View * Integrated Disease View * Integrated Nervous System Connectivity View * Integrated Podcasts View * Integrated Software View * Integrated Video View * Integrated Jobs * Integrated Blogs For a listing of the Federated Databases see, http://neuinfo.org/mynif/databaseList.php or refer to the Resources Listed by NIF Data Federation table below.

Proper citation: NIF Data Federation (RRID:SCR_004834) Copy   


http://www.remedyinformatics.com/

Software to harmonize the data that you have in different Excel files, databases, repositories, biospecimen applications, etc. and maps it to one common registry. Remedy Informatics' platform aggregates data from multiple sources, harmonizes the data via Ontology, and provides data visualization and pattern recognition and querying tools.

Proper citation: Registry Builder Data Harmonization and Aggregation Tool (RRID:SCR_006559) Copy   


http://www.nitrc.org/projects/froi_atlas/

An effort to provide a set of quasi-probabilistic atlases for established functional ROIs in the human neuroimaging literature. Many atlases exist for various anatomical parcellation schemes, such as the Brodmann areas, the structural atlases, tissue segmentation atlases, etc. To date, however, there is no atlas for so-called functional ROIs. Such fROIs are typically associated with an anatomical label of some kind (e.g. the _fusiform_ face area), but these labels are only approximate and can be misleading inasmuch as fROIs are not constrained by anatomical landmarks, whether cytoarchitectonic or based on sulcal and gyral landmarks. The goal of this project is to provide quasi-probabilistic atlases for fROIs that are based on published coordinates in the neuroimaging literature. This is an open-ended enterprise and the atlas can grow as needed. Members of the neuroscience and neuroimaging community interested in contributing to the project are encouraged to do so.

Proper citation: Functional ROI Atlas (RRID:SCR_009481) Copy   


http://www.nitrc.org/projects/atag/

This atlas takes advantage of ultra-high resolution 7T MRI to provide unprecedented levels of detail on structures of the basal ganglia in-vivo. The atlas includes probability maps of the Subthalamic Nucleus (STh) using T2*-imaging. For now it has been created on 13 young healthy participants with a mean age of 24.38 (range: 22-28, SD: 2.36). We recently also created atlas STh probability maps from 8 middle-aged participants with a mean age of 50.67 (range: 40-59, SD: 6.63), and 9 elderly participants with a mean age of 72.33 (range: 67-77, SD: 2.87). You can find more details about the creation of these maps in the following papers: Young: http://www.ncbi.nlm.nih.gov/pubmed/22227131 Middle-aged & Elderly: http://www.ncbi.nlm.nih.gov/pubmed/23486960 Participating institutions are the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, and the Cognitive Science Center Amsterdam, University of Amsterdam, the Netherlands.

Proper citation: Atlasing of the basal ganglia (RRID:SCR_009431) Copy   


http://www.nitrc.org/projects/striatalvoimap/

An atlas intended to provide accurate data in terms of specific uptake location to make the BP quantitation. The VOIs were manually drawn with software Analyze 9.0 (Mayo Clinic) in 18F-DOPA brain image after spatial normalization with a 18F-DOPA Template. Each striatum was divided into 6 sub-regions: ventral caudate, anterior dorsal caudate, posterior dorsal caudate, ventral putamen, anterior dorsal putamen and posterior dorsal putamen.

Proper citation: Striatal Subregional VOImap (RRID:SCR_014173) Copy   


http://www.nitrc.org/projects/cmap/

The Brain Coactivation Map describes all the coactivation networks in the human brain based on the meta-analysis of more than 5,400 neuroimaging articles (from NeuroSynth) containing more than 16,000 individual experiments. The map can be browsed interactively (CoactivationMap.app on GitHub) or queried from a shell using a command line tool (cmtool on GitHub).

Proper citation: Brain Coactivation Map (RRID:SCR_014172) Copy   


http://www.nitrc.org/projects/namicdtifiber/

Project hosting binary packaged distributions, scripts, example datasets, and corresponding results of analysis using their UNC/Utah NAMIC DTI Fiber Analysis Framework. This project can be seens as a master project encompassing several current NITRC projects into a coherent set. Their workflow utilizes tools already available on NITRC including: * DTIPrep * DTIAtlasBuilder * FiberViewerLight * DTIAtlasFiberAnalyzer * FADTTS

Proper citation: UNC/Utah NAMIC DTI Fiber Analysis Framework (RRID:SCR_009615) Copy   


  • RRID:SCR_009587

    This resource has 1+ mentions.

http://www.iit.edu/~mri/

Atlas that contains new anatomical, DTI, HARDI templates and probabilistic gray matter labels of the adult human brain in ICBM-152 space. Artifact-free MRI data from 72 human subjects was used in the development of the atlas. All diffusion MRI data collection was conducted using Turboprop, and spatial normalization was accomplished in a population-based fashion. A description of the contents of the atlas can be found in the Downloads link. NOTE: The files of the older IIT2 DTI Brain Template are still available. However, the new DTI template of the IIT Human Brain Atlas (v.3) is of superior quality and allows more accurate registration across subjects.

Proper citation: IIT Human Brain Atlas (RRID:SCR_009587) Copy   


  • RRID:SCR_009498

    This resource has 1+ mentions.

http://www.nitrc.org/projects/inia19/

Primate brain atlas created from over 100 structural MR scans of 19 rhesus macaque animals. The atlas currently comprises high-resolution T1-weighted average MR images with and without skull stripping, tissue probability maps, and a detailed parcellation map based on the NeuroMaps atlas.

Proper citation: INIA19 Primate Brain Atlas (RRID:SCR_009498) Copy   


http://www.nitrc.org/projects/r-spit/

Group ICA (Independent Component Analysis) was used to generate spatial templates for 12 common resting-state networks in 62 typically-developing children, ages 9-15. They have made these available for those that will find them useful for masking and spatial template matching procedures. Basic demographic data on the sample is provided along with the protocol used to generate the templates.

Proper citation: resting-state pediatric imaging template (RRID:SCR_009647) Copy   


http://www.nitrc.org/projects/atag_mri_scans/

Data sets from the atlasing of the basal ganglia (ATAG) consortium, which provides ultra-high resolution 7Tesla (T) magnetic resonance imaging (MRI) scans from young, middle-aged, and elderly participants. They include whole-brain and reduced field-of-view MP2RAGE and T2 scans with ultra-high resolution at a sub millimeter scale. The data can be used to develop new algorithms that help building new high-resolution atlases both in the basic and clinical neurosciences. They can also be used to inform the exact positioning of deep-brain electrodes relevant in patients with Parkinsons disease and neuropsychiatric diseases.

Proper citation: 7T Structural MRI scans ATAG (RRID:SCR_014084) Copy   


https://www.nitrc.org/search/?type_of_search=group&q=wisconsin&sa.x=0&sa.y=0&sa=Search

Atlases enable alignment of individual scans to improve localization and statistical power of results, and allow comparison of results between studies and institutions. Set of multi subject atlas templates is constructed specifically for functional and structural imaging studies of rhesus macaque.

Proper citation: Rhesus Macaque Brain Atlases (RRID:SCR_017533) Copy   


  • RRID:SCR_001411

http://neuro.imm.dtu.dk/wiki/Main_Page

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 10, 2025. Semantic wiki with structured information, primarily from functional and molecular neuroimaging papers, but there are also other types of papers, e.g., from personality genetics. It lists results from neuroimaging studies, such as Talairach coordinates and brain volume measurements, as well as software packages and brain regions. SQL dumps of the structured information in the wiki is available so complex queries can be formed. The Brede Wiki templates store the structured information from neuroscience papers and editors may add free format text. Template definitions format the data so it is presented as tables on the formatted wiki-page. From a given PMID a web-service can format information from PubMed for inclusion in the Brede Wiki. A Matlab script can extract coordinates from SPM5 and format them in the Talairach coordinate template format.

Proper citation: Brede Wiki (RRID:SCR_001411) Copy   


  • RRID:SCR_001398

    This resource has 100+ mentions.

https://www.mristudio.org/

An image processing program running under Windows suitable for such tasks as tensor calculation, color mapping, fiber tracking, and 3D visualization. Most of operations can be done with only a few clicks. This tool evolved from DTI Studio. Tools in the program can be grouped in the following way: * Image Viewer * Diffusion Tensor Calculations * Fiber Tracking and Editing * 3D Visualization * Image File Management * Region of Interesting (ROI) Drawing and Statistics * Image Registration

Proper citation: MRI Studio (RRID:SCR_001398) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X