Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
A Python-based open source toolkit for magnetic resonance connectome mapping, data management, sharing, visualization and analysis. The toolkit includes the connectome mapper (a full DMRI processing pipeline), a new file format for multi modal data and metadata, and a visualization application.
Proper citation: Connectome Mapping Toolkit (RRID:SCR_001644) Copy
http://www.aphidbase.com/aphidbase/
Aphid genome database. Facilitates community annotation of pea aphid genome by International Aphid Genomics Consortium (IAGC). It aims to store recently acquired genomic resources on aphids and compare them to other insect resources as functional annotation tools. AphidBase Information System designed to organize and distribute genomic data and annotations for large international community was constructed using open source software tools from Generic Model Organism Database (GMOD).
Proper citation: APHIDBASE (RRID:SCR_001765) Copy
http://biodev.extra.cea.fr/interoporc/
Automatic prediction tool to infer protein-protein interaction networks, it is applicable for lots of species using orthology and known interactions. The interoPORC method is based on the interolog concept and combines source interaction datasets from public databases as well as clusters of orthologous proteins (PORC) available on Integr8. Users can use this page to ask InteroPorc for all species present in Integr8. Some results are already computed and users can run InteroPorc to investigate any other species. Currently, the following databases are processed and merged (with datetime of the last available public release for each database used): IntAct, MINT, DIP, and Integr8.
Proper citation: InteroPorc (RRID:SCR_002067) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented June 5, 2017. It has been merged with Cell Image Library. Database for sharing and mining cellular and subcellular high resolution 2D, 3D and 4D data from light and electron microscopy, including correlated imaging that makes unique and valuable datasets available to the scientific community for visualization, reuse and reanalysis. Techniques range from wide field mosaics taken with multiphoton microscopy to 3D reconstructions of cellular ultrastructure using electron tomography. Contributions from the community are welcome. The CCDB was designed around the process of reconstruction from 2D micrographs, capturing key steps in the process from experiment to analysis. The CCDB refers to the set of images taken from microscope the as the Microscopy Product. The microscopy product refers to a set of related 2D images taken by light (epifluorescence, transmitted light, confocal or multiphoton) or electron microscopy (conventional or high voltage transmission electron microscopy). These image sets may comprise a tilt series, optical section series, through focus series, serial sections, mosaics, time series or a set of survey sections taken in a single microscopy session that are not related in any systematic way. A given set of data may be more than one product, for example, it is possible for a set of images to be both a mosaic and a tilt series. The Microscopy Product ID serves as the accession number for the CCDB. All microscopy products must belong to a project and be stored along with key specimen preparation details. Each project receives a unique Project ID that groups together related microscopy products. Many of the datasets come from published literature, but publication is not a prerequisite for inclusion in the CCDB. Any datasets that are of high quality and interest to the scientific community can be included in the CCDB.
Proper citation: Cell Centered Database (RRID:SCR_002168) Copy
https://github.com/kristinbranson/BABAM
Graphical user interface for exploring hypotheses of correlations between neural activity in regions of the brain and behavior for Drosophila melanogaster. These correlation hypotheses are the result of our thermogenetic neural activation screen from the Janelia GAL4 collection.
Proper citation: BABAM (RRID:SCR_015632) Copy
https://4dgenome.research.chop.edu/
Repository for chromatin interaction data. Records can be queried by genomic regions, gene names, organism, and detection technology. Database is continuously updated by curators. Contributions from scientific community.
Proper citation: 4D Genome (RRID:SCR_017489) Copy
http://www.ihop-net.org/UniPub/iHOP/
Information system that provides a network of concurring genes and proteins extends through the scientific literature touching on phenotypes, pathologies and gene function. It provides this network as a natural way of accessing millions of PubMed abstracts. By using genes and proteins as hyperlinks between sentences and abstracts, the information in PubMed can be converted into one navigable resource, bringing all advantages of the internet to scientific literature research. Moreover, this literature network can be superimposed on experimental interaction data (e.g., yeast-two hybrid data from Drosophila melanogaster and Caenorhabditis elegans) to make possible a simultaneous analysis of new and existing knowledge. The network contains half a million sentences and 30,000 different genes from humans, mice, D. melanogaster, C. elegans, zebrafish, Arabidopsis thaliana, yeast and Escherichia coli.
Proper citation: Information Hyperlinked Over Proteins (RRID:SCR_004829) Copy
http://llama.mshri.on.ca/funcassociate/
A web-based tool that accepts as input a list of genes, and returns a list of GO attributes that are over- (or under-) represented among the genes in the input list. Only those over- (or under-) representations that are statistically significant, after correcting for multiple hypotheses testing, are reported. Currently 37 organisms are supported. In addition to the input list of genes, users may specify a) whether this list should be regarded as ordered or unordered; b) the universe of genes to be considered by FuncAssociate; c) whether to report over-, or under-represented attributes, or both; and d) the p-value cutoff. A new version of FuncAssociate supports a wider range of naming schemes for input genes, and uses more frequently updated GO associations. However, some features of the original version, such as sorting by LOD or the option to see the gene-attribute table, are not yet implemented. Platform: Online tool
Proper citation: FuncAssociate: The Gene Set Functionator (RRID:SCR_005768) Copy
A web-based tool that provides composite interpretations for microarray data comparing two sample groups as well as lists of genes from diverse sources of biological information. It provides multiple gene set analysis methods for microarray inputs as well as enrichment analyses for lists of genes. It screens redundant composite annotations when generating and prioritizing them. It also incorporates union and subtracted sets as well as intersection sets. Users can upload their gene sets (e.g. predicted miRNA targets) to generate and analyze new composite sets.
Proper citation: ADGO (RRID:SCR_006343) Copy
http://www.oeb.harvard.edu/faculty/hartl/old_site/lab/publications/GeneMerge.html
THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Web-based and standalone application that returns a wide range of functional genomic data for a given set of study genes and provides rank scores for over-representation of particular functions or categories in the data. It uses the hypergeometric test statistic which returns statistically correct results for samples of all sizes and is the #2 fastest GO tool available (Khatri and Draghici, 2005). GeneMerge can be used with any discrete, locus-based annotation data, including, literature references, genetic interactions, mutant phenotypes as well as traditional Gene Ontology queries. GeneMerge is particularly useful for the analysis of microarray data and other large biological datasets. The big advantage of GeneMerge over other similar programs is that you are not limited to analyzing your data from the perspective of a pre-packaged set of gene-association data. You can download or create gene-association files to analyze your data from an unlimited number of perspectives. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GeneMerge (RRID:SCR_005744) Copy
Web-based tool for the ontological analysis of large lists of genes. It can be used to determine biological annotations or combinations of annotations that are significantly associated to a list of genes under study with respect to a reference list. As well as single annotations, this tool allows users to simultaneously evaluate annotations from different sources, for example Biological Process and Cellular Component categories of Gene Ontology., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GeneCodis (RRID:SCR_006943) Copy
A platform composed of three modules: the Database, the Search Engine, and rSNPs, for the computational identification of transcription factor binding sites (TFBSs) in multiple genomes, that combines TRANSFAC and JASPAR data with the search power of profile hidden Markov models (HMMs). The Database contains putative TFBSs found in the upstream sequences of genes from the human, mouse and D.melanogaster genomes. For each gene, they scanned the region from 10,000 base pairs upstream of the transcript start to 50 base pairs downstream of the coding sequence start against all their models. Therefore, the database contains putative binding sites in the gene promoter and in the initial introns and non-coding exons. Information displayed for each putative binding site includes the transcription factor name, its position (absolute on the chromosome, or relative to the gene), the score of the prediction, and the region of the gene the site belongs to. If the selected gene has homologs in any of the other two organisms, the program optionally displays the putative TFBSs in the homologs. The Search Engine allows the identification, visualization and selection of putative TFBSs occurring in the promoter or other regions of a gene from the human, mouse, D.melanogaster, C.elegans or S.cerevisiae genomes. In addition, it allows the user to upload a sequence to query and to build a model by supplying a multiple sequence alignment of binding sites for a transcription factor of interest. rSNPs MAPPER is designed to identify Single Nucleotide Polymorphisms (SNPs) that may have an effect on the presence of one or more TFBSs.
Proper citation: MAPPER - Multi-genome Analysis of Positions and Patterns of Elements of Regulation (RRID:SCR_003077) Copy
http://www.ncbi.nlm.nih.gov/homologene
Automated system for constructing putative homology groups from complete gene sets of wide range of eukaryotic species. Databse that provides system for automatic detection of homologs, including paralogs and orthologs, among annotated genes of sequenced eukaryotic genomes. HomoloGene processing uses proteins from input organisms to compare and sequence homologs, mapping back to corresponding DNA sequences. Reports include homology and phenotype information drawn from Online Mendelian Inheritance in Man, Mouse Genome Informatics, Zebrafish Information Network, Saccharomyces Genome Database and FlyBase.
Proper citation: HomoloGene (RRID:SCR_002924) Copy
http://www.biocomputing.it/fidea/
A web server for the functional interpretation of differential expression analysis. It can: * Calculate overrepresentation statistics using KEGG, Interpro, Gene Ontology Molecular Function, Gene Ontology Biological Process, Gene Ontology Cellular Component and GoSlim classifications; * Analyze down-regulated and up-regulated DE genes separately or together as a single set; * Provide interactive graphs and tables that can be modified on the fly according to user defined parameters; the user can set a fold change filter and interactively see the effects on the gene set under examination; * Output publication-ready plot of the graph; * Compare the results of several experiments in any combination.
Proper citation: FIDEA (RRID:SCR_004187) Copy
https://neuinfo.org/about/sources/nlx_143622-1
International registry of biomaterial supply resources both for transplantation and research. Contributions to this resource are welcome. The database is searchable through NIF and is updated regularly.
Proper citation: One Mind Biospecimen Bank Listing (RRID:SCR_004193) Copy
http://scicrunch.org/resources
Portal providing identifiers for Antibodies, Model Organisms, and Tools (software, databases, services) created in support of the Resource Identification Initiative, which aims to promote research resource identification, discovery, and reuse. The portal offers a central location for obtaining and exploring Research Resource Identifiers (RRIDs) - persistent and unique identifiers for referencing a research resource. A critical goal of the RII is the widespread adoption of RRIDs to cite resources in the biomedical literature and other places that reference their generation or use. RRIDs use established community identifiers where they exist, and are cross-referenced in their system where more than one identifier exists for a single resource.
Proper citation: Resource Identification Portal (RRID:SCR_004098) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.