Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://compbio.cs.brown.edu/projects/gasv/
Software tool combining both paired read and read depth signals into probabilistic model which can analyze multiple alignments of reads. Used to find structural variation in both normal and cancer genomes using data from variety of next-generation sequencing platforms. Used to predict structural variants directly from aligned reads in SAM/BAM format.Combines read depth information along with discordant paired read mappings into single probabilistic model two common signals of structural variation. When multiple alignments of read are given, GASVPro utilizes Markov Chain Monte Carlo procedure to sample over the space of possible alignments.
Proper citation: GASVPro (RRID:SCR_005259) Copy
Database that unites independently created and maintained data collections of transcription factor and regulatory sequence annotation. The flexible PAZAR schema permits the representation of diverse information derived from experiments ranging from biochemical protein-DNA binding to cellular reporter gene assays. Data collections can be made available to the public, or restricted to specific system users. The data ''boutiques'' within the shopping-mall-inspired system facilitate the analysis of genomics data and the creation of predictive models of gene regulation., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: PAZAR (RRID:SCR_005410) Copy
http://www.jcvi.org/cgi-bin/tigrfams/index.cgi
Consists curated multiple sequence alignments, Hidden Markov Models (HMMs) for protein sequence classification, and associated information designed to support automated annotation of (mostly prokaryotic) proteins. Starting with release 10.0, TIGRFAMs models use HMMER3, which provides excellent search speed as well as exquisite search sensitivity. See the "TIGRFAMs Complete Listing" page to review the accession, protein name, model type, and EC number (if assigned) of all models. TIGRFAMs is a member database in InterPro. The HMM libraries and supporting files are available to download and use for free from our FTP site.
Proper citation: TIGRFAMS (RRID:SCR_005493) Copy
An online toolbox and workflow management system for a broad range of bioinformatic and systems biology applications. The individual modules, or Bricks, are unified under a standardized interface, with a consistent look-and-feel and can flexibly be put together to comprehensive workflows. The workflow management is intuitively handled through a simple drag-and-drop system. With this system, you can edit the predefined workflows or compose your own workflows from scratch. Your own Bricks can easily be added as scripts or plug-ins and can be used in combination with pre-existing analyses. GeneXplain GmbH provides a number of state-of-the-art bricks; some of them can be obtained free of charge, while others require licensing for small fee in order to guarantee active maintenance and dynamic adaptation to the rapidly developing know-how in this field.
Proper citation: geneXplain (RRID:SCR_005573) Copy
http://www.yandell-lab.org/software/mwas.html
The MAKER Web Annotation Service (MWAS) is an easily configurable web-accessible genome annotation pipeline. It''''s purpose is to allow research groups with small to intermediate amounts of eukaryotic and prokaryotic genome sequence (i.e. BAC clones, small whole genomes, preliminary sequencing data, etc.) to independently annotate and analyze their data and produce output that can be loaded into a genome database. MWAS is build on the stand alone genome annotation pipeline MAKER, and users who wish to annotate larger datasets and whole genomes are free to download MAKER for use on their own systems. MWAS identifies repeats, aligns ESTs and proteins to a genome, produces ab-initio gene predictions and automatically synthesizes these data into gene annotations having evidence-based quality values. MWAS can also automatically train popular gene prediction algorithms for use on new genomes for which pre-existing information is limited. MAKER is a member of the Generic Model Organism Database (GMOD) project and output produced by this site can be directly used with other GMOD tools. Annotations can be directly viewed online by the user via GBrowse, JBrowse, and Apollo, or they can be downloaded for local analysis and integration into a genome database. MWAS also supplies summary statistics on sequence features via the Sequence Ontology tool SOBA. MWAS should prove especially useful for emerging model organism genome projects with minimal bioinformatics expertise and computer resources, since a user can produce final genome annotations without having to install and configure any software locally.
Proper citation: MAKER Web Annotation Service (RRID:SCR_005318) Copy
http://bowtie-bio.sourceforge.net/index.shtml
Software ultrafast memory efficient tool for aligning sequencing reads. Bowtie is short read aligner.
Proper citation: Bowtie (RRID:SCR_005476) Copy
http://seqant.genetics.emory.edu/
A free web service and open source software package that performs rapid, automated annotation of DNA sequence variants (single base mutations, insertions, deletions) discovered with any sequencing platform. Variant sites are characterized with respect to their functional type (Silent, Replacement, 5' UTR, 3' UTR, Intronic, Intergenic), whether they have been previously submitted to dbSNP, and their evolutionary conservation. Annotated variants can be viewed directly on the web browser, downloaded in a tab delimited text file, or directly uploaded in a Browser Extended Data (BED) format to the UCSC genome browser. SeqAnt further identifies all loci harboring two or more coding sequence variants that help investigators identify potential compound heterozygous loci within exome sequencing experiments. In total, SeqAnt resolves a significant bottleneck by allowing an investigator to rapidly prioritize the functional analysis of those variants of interest.
Proper citation: SeqAnt (RRID:SCR_005186) Copy
http://www.ebi.ac.uk/Tools/pfa/iprscan/
Software package for functional analysis of sequences by classifying them into families and predicting presence of domains and sites. Scans sequences against InterPro's signatures. Characterizes nucleotide or protein function by matching it with models from several different databases. Used in large scale analysis of whole proteomes, genomes and metagenomes. Available as Web based version and standalone Perl version and SOAP Web Service.
Proper citation: InterProScan (RRID:SCR_005829) Copy
Ratings or validation data are available for this resource
Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.
Proper citation: UCSC Genome Browser (RRID:SCR_005780) Copy
Bioinformatics Resource Center for invertebrate vectors. Provides web-based resources to scientific community conducting basic and applied research on organisms considered potential agents of biowarfare or bioterrorism or causing emerging or re-emerging diseases.
Proper citation: VectorBase (RRID:SCR_005917) Copy
http://newt-omics.mpi-bn.mpg.de/index.php
Newt-omics is a database, which enables researchers to locate, retrieve and store data sets dedicated to the molecular characterization of newts. Newt-omics is a transcript-centered database, based on an Expressed Sequence Tag (EST) data set from the newt, covering ~50,000 Sanger sequenced transcripts and a set of high-density microarray data, generated from regenerating hearts. Newt-omics also contains a large set of peptides identified by mass spectrometry, which was used to validate 13,810 ESTs as true protein coding. Newt-omics is open to implement additional high-throughput data sets without changing the database structure. Via a user-friendly interface Newt-omics allows access to a huge set of molecular data without the need for prior bioinformatical expertise. The newt Notopthalmus viridescens is the master of regeneration. This organism is known for more than 200 years for its exceptional regenerative capabilities. Newts can completely replace lost appendages like limb and tail, lens and retina and parts of the central nervous system. Moreover, after cardiac injury newts can rebuild the functional myocardium with no scar formation. To date only very limited information from public databases is available. Newt-Omics aims to provide a comprehensive platform of expressed genes during tissue regeneration, including extensive annotations, expression data and experimentally verified peptide sequences with yet no homology to other publicly available gene sequences. The goal is to obtain a detailed understanding of the molecular processes underlying tissue regeneration in the newt, that may lead to the development of approaches, efficiently stimulating regenerative pathways in mammalians. * Number of contigs: 26594 * Number of est in contigs: 48537 * Number of transcripts with verified peptide: 5291 * Number of peptides: 15169
Proper citation: Newtomics (RRID:SCR_006073) Copy
http://www.nematodes.org/nembase4/
NEMBASE is a comprehensive Nematode Transcriptome Database including 63 nematode species, over 600,000 ESTs and over 250,000 proteins. Nematode parasites are of major importance in human health and agriculture, and free-living species deliver essential ecosystem services. The genomics revolution has resulted in the production of many datasets of expressed sequence tags (ESTs) from a phylogenetically wide range of nematode species, but these are not easily compared. NEMBASE4 presents a single portal into extensively functionally annotated, EST-derived transcriptomes from over 60 species of nematodes, including plant and animal parasites and free-living taxa. Using the PartiGene suite of tools, we have assembled the publicly available ESTs for each species into a high-quality set of putative transcripts. These transcripts have been translated to produce a protein sequence resource and each is annotated with functional information derived from comparison with well-studied nematode species such as Caenorhabditis elegans and other non-nematode resources. By cross-comparing the sequences within NEMBASE4, we have also generated a protein family assignment for each translation. The data are presented in an openly accessible, interactive database. An example of the utility of NEMBASE4 is that it can examine the uniqueness of the transcriptomes of major clades of parasitic nematodes, identifying lineage-restricted genes that may underpin particular parasitic phenotypes, possible viral pathogens of nematodes, and nematode-unique protein families that may be developed as drug targets.
Proper citation: NEMBASE (RRID:SCR_006070) Copy
http://hfv.lanl.gov/content/index
The Hemorrhagic Fever Viruses (HFV) sequence database collects and stores sequence data and provides a user-friendly search interface and a large number of sequence analysis tools, following the model of the highly regarded and widely used Los Alamos HIV database. The database uses an algorithm that aligns each sequence to a species-wide reference sequence. The NCBI RefSeq database is used for this; if a reference sequence is not available, a Blast search finds the best candidate. Using this method, sequences in each genus can be retrieved pre-aligned. Hemorrhagic fever viruses (HFVs) are a diverse set of over 80 viral species, found in 10 different genera comprising five different families: arena-, bunya-, flavi-, filo- and togaviridae. All these viruses are highly variable and evolve rapidly, making them elusive targets for the immune system and for vaccine and drug design. About 55,000 HFV sequences exist in the public domain today. A central website that provides annotated sequences and analysis tools will be helpful to HFV researchers worldwide.
Proper citation: HFV Database (RRID:SCR_006017) Copy
http://athina.biol.uoa.gr/DAM-Bio/
An integrated environment designed to support protein sequence and structure analysis on the web.
Proper citation: DAM-Bio (RRID:SCR_006226) Copy
http://aias.biol.uoa.gr/OMPdb/
A database of Beta-barrel outer membrane proteins from Gram-negative bacteria. The web interface of OMPdb offers the user the ability not only to view the available data, but also to submit advanced queries for text search within the database''s protein entries or run BLAST searches against the database. The most up-to-date version of the database (as well as all past versions) can be downloaded in various formats (flat text, XML format or raw FASTA sequences). For constructing OMPdb, multiple freely accessible resources were combined and a detailed literature search was performed. The classification of OMPdb''s protein entries into families is based mainly on structural and functional criteria. Information included in the database consists of sequence data, as well as annotation for structural characteristics (such as the transmembrane segments), literature references and links to other public databases, features that are unique worldwide. Along with the database, a collection of profile Hidden Markov Models that were shown to be characteristic for Beta-barrel outer membrane proteins was also compiled. This set, when used in combination with our previously developed algorithms (PRED-TMBB, MCMBB and ConBBPRED) will serve as a powerful tool in matters of discrimination and classification of novel Beta-barrel proteins and whole-genome analyses., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: OMPdb (RRID:SCR_006221) Copy
http://iubio.bio.indiana.edu/webapps/SeWeR/
Sequence analysis using Web Resources (SeWeR) is an integrated, Dynamic HTML (DHTML) interface to commonly used bioinformatics services available on the World Wide Web. It is highly customizable, extendable, platform neutral, completely server-independent and can be hosted as a web page as well as being used as stand-alone software running within a web browser. It doesn''t require any server to host itself. The goal of SeWeR is to turn your web-browser into a powerful sequence-analysis tool. It is written entirely in JavaScript1.2. SeWeR can be downloaded and mirrored freely. The whole package is just around 300K. You can even run it from a floppy. SeWeR is not compatible with Netscape 6. SeWeR now generates graphics. Savvy is a plasmid drawing software that generates plasmid map in the revolutionary Scalable Vector Graphics format from W3C.
Proper citation: SeWeR - SEquence analysis using WEb Resources (RRID:SCR_004167) Copy
http://nematode.lab.nig.ac.jp/
Expression pattern map of the 100Mb genome of the nematode Caenorhabditis elegans through EST analysis and systematic whole mount in situ hybridization. NEXTDB is the database to integrate all information from their expression pattern project and to make the data available to the scientific community. Information available in the current version is as follows: * Map: Visual expression of the relationships among the cosmids, predicted genes and the cDNA clones. * Image: In situ hybridization images that are arranged by their developmental stages. * Sequence: Tag sequences of the cDNA clones are available. * Homology: Results of BLASTX search are available. Users of the data presented on our web pages should not publish the information without our permission and appropriate acknowledgment. Methods are available for: * In situ hybridization on whole mount embryos of C.elegans * Protocols for large scale in situ hybridization on C.elegans larvae
Proper citation: NEXTDB (RRID:SCR_004480) Copy
http://www.genedb.org/Homepage/Tbruceibrucei927
Database of the most recent sequence updates and annotations for the T. brucei genome. New annotations are constantly being added to keep up with published manuscripts and feedback from the Trypanosomatid research community. You may search by Protein Length, Molecular Mass, Gene Type, Date, Location, Protein Targeting, Transmembrane Helices, Product, GO, EC, Pfam ID, Curation and Comments, and Dbxrefs. BLAST and other tools are available. T. brucei possesses a two-unit genome, a nuclear genome and a mitochondrial (kinetoplast) genome with a total estimated size of 35Mb/haploid genome. The nuclear genome is split into three classes of chromosomes according to their size on pulsed-field gel electrophoresis, 11 pairs of megabase chromosomes (0.9-5.7 Mb), intermediate (300-900 kb) and minichromosomes (50-100 kb). The T. brucei genome contains a ~0.5Mb segmental duplication affecting chromosomes 4 and 8, which is responsible for some 75 gene duplicates unique to this species. A comparative chromosome map of the duplicons can be accessed here (PubmedID 18036214). Protozoan parasites within the species Trypanosoma brucei are the etiological agent of human sleeping sickness and Nagana in animals. Infections are limited to patches of sub-Saharan Africa where insects vectors of the Glossina genus are endemic. The most recent estimates indicate between 50,000 - 70,000 human cases currently exist, with 17 000 new cases each year (WHO Factsheet, 2006). In collaboration with GeneDB, the EuPathDB genomic sequence data and annotations are regularly deposited on TriTrypDB where they can be integrated with other datasets and queried using customized queries.
Proper citation: GeneDB Tbrucei (RRID:SCR_004786) Copy
A fungal rDNA internal transcribed spacer (ITS) sequence database (although additional genes and genetic markers are also welcome) to facilitate identification of environmental samples of fungal DNA. Additional important features include user annotation of INSD sequences to add metadata on, e.g., locality, habitat, soil, climate, and interacting taxa. The user can furthermore annotate INSD sequences with additional species identifications that will appear in the results of any analyses done. UNITE focuses on high-quality ITS sequences generated from fruiting bodies collected and identified by experts and deposited in public herbaria. In addition, it also holds all fungal ITS sequences in the International Nucleotide Sequence Databases (INSD: NCBI, EMBL, DDBJ). Both sets of sequences may be used in any analyses carried out. UNITE is accompanied by a project management system called PlutoF, where users can store field data, document the sequencing lab procedures, manage sequences, and make analyses. PlutoF intends to make it possible for taxonomists, ecologists, and biogeographers to use a common platform for data storage, handling, and analyses, with the intent of facilitating an integration of these disciplines. A user can have an unlimited number of projects but still make analyses across any project data available to him.
Proper citation: UNITE (RRID:SCR_006518) Copy
A comparative platform for green plant genomics. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology / paralogy relationships as well as clade specific genes and gene expansions. As of release v9.1, Phytozome provides access to forty-one sequenced and annotated green plant genomes which have been clustered into gene families at 20 evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are hyper-linked and searchable., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Phytozome (RRID:SCR_006507) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.