Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 827 results
Snippet view Table view Download 827 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_001395

    This resource has 10+ mentions.

http://www.well.ox.ac.uk/happy/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software package for Multipoint QTL Mapping in Genetically Heterogeneous Animals (entry from Genetic Analysis Software) The method is implemented in a C-program and there is now an R version of HAPPY. You can run HAPPY remotely from their web server using your own data (or try it out on the data provided for download).

Proper citation: Happy (RRID:SCR_001395) Copy   


https://www.q2labsolutions.com/genomics-laboratories

Core provides whole genome to focused set gene expression and genotyping assays along with DNA sequencings services, sequence enrichment technologies and bioinformatics support. Platforms utilized include Affymetrix GeneChip, Agilent Sure Select, Fluidigm Access Arrays, Illumina BeadChip, iScan, Genome Analyzer and Hi-Seq, RainDance Technologies RDT 1000 and, the Pacific Biosciences PacBio RS. Expression Analysis offers solutions for challenging specimens such as whole blood and FFPE tissues, as well as nucleic acid isolation and data analysis services.

Proper citation: Q Squared Solutions Expression Analysis (RRID:SCR_012497) Copy   


http://www.viprbrc.org/brc/home.do?decorator=vipr

Provides searchable public repository of genomic, proteomic and other research data for different strains of pathogenic viruses along with suite of tools for analyzing data. Data can be shared, aggregated, analyzed using ViPR tools, and downloaded for local analysis. ViPR is an NIAID-funded resource that support the research of viral pathogens in the NIAID Category A-C Priority Pathogen lists and those causing (re)emerging infectious diseases. It provides a dedicated gateway to SARS-CoV-2 data that integrates data from external sources (GenBank, UniProt, Immune Epitope Database, Protein Data Bank), direct submissions, analysis pipelines and expert curation, and provides a suite of bioinformatics analysis and visualization tools for virology research.

Proper citation: Virus Pathogen Resource (ViPR) (RRID:SCR_012983) Copy   


  • RRID:SCR_013124

http://www.dkfz.de/en/epidemiologie-krebserkrankungen/software/software.html

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 24,2023. Software program that performs estimation of power and sample sizes required to detect genetic and environmental main, as well as gene-environment interaction (GxE) effects in indirect matched case-control studies (1:1 matching). When the hypothesis of GxE is tested, power/sample size will be estimated for the detection of GxE, as well as for the detection of genetic and environmental marginal effects. Furthermore, power estimation is implemented for the joint test of genetic marginal and GxE effects (Kraft P et al., 2007). Power and sample size estimations are based on Gauderman''s (2002) asymptotic approach for power and sample size estimations in direct studies of GxE. Hardy-Weinberg equilibrium and independence of genotypes and environmental exposures in the population are assumed. The estimates are based on genotypic codes (G=1 (G=0) for individuals who carry a (non-) risk genotype), which depend on the mode of inheritance (dominant, recessive, or multiplicative). A conditional logistic regression approach is used, which employs a likelihood-ratio test with respect to a biallelic candidate SNP, a binary environmental factor (E=1 (E=0) in (un)exposed individuals), and the interaction between these components. (entry from Genetic Analysis Software)

Proper citation: PIAGE (RRID:SCR_013124) Copy   


  • RRID:SCR_013133

    This resource has 10+ mentions.

http://bioinformatics.ust.hk/BOOST.html

Software application (entry from Genetic Analysis Software) for a method for detecting gene-gene interactions. It allows examining all pairwise interactions in genome-wide case-control studies.

Proper citation: BOOST (RRID:SCR_013133) Copy   


  • RRID:SCR_013331

    This resource has 1000+ mentions.

http://PlasmoDB.org

Functional genomic database for malaria parasites. Database for Plasmodium spp. Provides resource for data analysis and visualization in gene-by-gene or genome-wide scale. PlasmoDB 5.5 contains annotated genomes, evidence of transcription, proteomics evidence, protein function evidence, population biology and evolution data. Data can be queried by selecting from query grid or drop down menus. Results can be combined with each other on query history page. Search results can be downloaded with associated functional data and registered users can store their query history for future retrieval or analysis.Key community database for malaria researchers, intersecting many types of laboratory and computational data, aggregated by gene.

Proper citation: PlasmoDB (RRID:SCR_013331) Copy   


  • RRID:SCR_013347

    This resource has 1+ mentions.

http://folk.uio.no/thoree/FEST/

An R package for simulations and likelihood calculations of pair-wise family relationships using DNA marker data. (entry from Genetic Analysis Software)

Proper citation: R/FEST (RRID:SCR_013347) Copy   


http://www.i2b2.org

i2b2 (Informatics for Integrating Biology and the Bedside) is an NIH-funded National Center for Biomedical Computing based at Partners HealthCare System. The i2b2 Center is developing a scalable informatics framework that will enable clinical researchers to use existing clinical data for discovery research and, when combined with IRB-approved genomic data, facilitate the design of targeted therapies for individual patients with diseases having genetic origin. For some resources (e.g. software) the use of the resource requires accepting a specific (e.g. OpenSource) license.

Proper citation: Informatics for Integrating Biology and the Bedside (RRID:SCR_013629) Copy   


http://www.euratrans.eu/

The European large-scale functional genomics in the rat for translational research (EURATRANS) consortium brings together investigators who will use next-generation sequencing technologies to generate genomic, transcriptomic and epigenomic datasets. The goal is to create quantitative metabonomic and proteomic datasets to give significant depth of coverage, at multiple levels, across pathophysiological phenotypes. The aim is to enable insights into disease mechanisms, through an integrative, cross-disciplinary approach to understanding large-scale functional genomic datasets in rats and humans.

Proper citation: European large-scale functional genomics in the rat for translational research (EURATRANS) (RRID:SCR_013697) Copy   


  • RRID:SCR_006462

    This resource has 500+ mentions.

http://www.cdc.gov/genomics/default.htm

The Office of Public Health Genomics (OPHG) aims to integrate genomics into public health research, policy, and programs. Doing so could improve interventions designed to prevent and control the country''s leading chronic, infectious, environmental, and occupational diseases. OPHG''s efforts focus on conducting population-based genomic research, assessing the role of family health history in disease risk and prevention, supporting a systematic process for evaluating genetic tests, translating genomics into public health research and programs, and strengthening capacity for public health genomics in disease prevention programs. Goals: To improve public health interventions of diseases of major public health importance, including chronic, infectious, environmental, and occupational diseases, through six major initiatives: * Evaluation of Genomic Applications in Practice and Prevention (EGAPP), * Human Genome Epidemiology Network (HuGENet), * NHANES Collaborative Genomics Project, * Family History Public Health Initiative, * Genomics Translation Research and Programs, and, * Genomic Applications in Practice and Prevention Network (GAPPNet).

Proper citation: Public Health Genomics (RRID:SCR_006462) Copy   


  • RRID:SCR_006472

    This resource has 10000+ mentions.

http://www.ncbi.nlm.nih.gov

A portal to biomedical and genomic information. NCBI creates public databases, conducts research in computational biology, develops software tools for analyzing genome data, and disseminates biomedical information for the better understanding of molecular processes affecting human health and disease.

Proper citation: NCBI (RRID:SCR_006472) Copy   


  • RRID:SCR_006498

    This resource has 10+ mentions.

http://bioconductor.org/packages/bioc/html/GeneAnswers.html

GeneAnswers provide an integrated tool for given genes biological or medical interpretation. It includes statistical test of given genes and specified categories. Microarray techniques have been widely employed in genomic scale studies for more than one decade. The standard analysis of microarray data is to filter out a group of genes from thousands of probes by certain statistical criteria. These genes are usually called significantly differentially expressed genes. Recently, next generation sequencing (NGS) is gradually adopted to explore gene transcription, methylation, etc. Also a gene list can be obtained by NGS preliminary data analysis. However, this type of information is not enough to understand the potential linkage between identified genes and interested functions. The integrated functional and pathway analysis with gene expression data would be very helpful for researchers to interpret the relationship between the identified genes and proposed biological or medical functions and pathways. The GeneAnswers package provides an integrated solution for a group of genes and specified categories (biological or medical functions, such as Gene Ontology, Disease Ontology, KEGG, etc) to reveal the potential relationship between them by means of statistical methods, and make user-friendly network visualization to interpret the results. Besides the package has a function to combine gene expression profile and category analysis together by outputting concept-gene cross tables, keywords query on NCBI Entrez Gene and application of human based Disease ontology analysis of given genes from other species can help people to understand or discover potential connection between genes and functions. Sponsors: This project was supported in part by Award Number UL1RR025741 from the National Center for Research Resources.

Proper citation: GeneAnswers (RRID:SCR_006498) Copy   


  • RRID:SCR_006625

    This resource has 100+ mentions.

http://gmd.mpimp-golm.mpg.de/

It facilitates the search for and dissemination of mass spectra from biologically active metabolites quantified using Gas chromatography (GC) coupled to mass spectrometry (MS). Use the Search Page to search for a compound of your interest, using the name, mass, formula, InChI etc. as query input. Additionally, a Library Search service enables the search of user submitted mass spectra within the GMD. In parallel to the library search, a prediction of chemical sub-groups is performed. This approach has reached beta level and a publication is currently under review. Using several sub-group specific Decision Trees (DTs), mass spectra are classified with respect to the presence of the chemical moieties within the linked (unknown) compound. Prediction of functional groups (ms analysis) facilitates the search of metabolites within the GMD by means of user submitted GC-MS spectra consisting of retention index (n-alkanes, if vailable) and mass intensities ratios. In addition, a functional group prediction will help to characterize those metabolites without available reference mass spectra included in the GMD so far. Instead, the unknown metabolite is characterized by predicted presence or absence of functional groups. For power users this functionality presented here is exposed as soap based web services. Functional group prediction of compounds by means of GC-EI-MS spectra using Microsoft analysis service decision trees All currently available trained decision trees and sub-structure predictions provided by the GMD interface. Table describes the functional group, optional use of an RI system, record date of the trained decision tree, number of MSTs with proportion of MSTs linked to metabolites with the functional group present for each tree. Average and standard deviation of the 50-fold CV error, namely the ratio false over correctly sorted MSTs in the trained DT, are listed. The GMD website offers a range of mass spectral reference libraries to academic users which can be downloaded free of charge in various electronic formats. The libraries are constituted by base peak normalized consensus spectra of single analytes and contain masses in the range 70 to 600 amu, while the ubiquitous mass fragments typically generated from compounds carrying a trimethylsilyl-moiety, namely the fragments at m/z 73, 74, 75, 147, 148, and 149, were excluded.

Proper citation: GMD (RRID:SCR_006625) Copy   


https://www.fludb.org/brc/home.spg?decorator=influenza

The Influenza Research Database (IRD) serves as a public repository and analysis platform for flu sequence, experiment, surveillance and related data.

Proper citation: Influenza Research Database (IRD) (RRID:SCR_006641) Copy   


http://www.dpvweb.net/

DPVweb provides a central source of information about viruses, viroids and satellites of plants, fungi and protozoa. Comprehensive taxonomic information, including brief descriptions of each family and genus, and classified lists of virus sequences are provided. The database also holds detailed, curated, information for all sequences of viruses, viroids and satellites of plants, fungi and protozoa that are complete or that contain at least one complete gene. For comparative purposes, it also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA genome. The start and end positions of each feature (gene, non-translated region and the like) have been recorded and checked for accuracy. As far as possible, nomenclature for genes and proteins are standardized within genera and families. Sequences of features (either as DNA or amino acid sequences) can be directly downloaded from the website in FASTA format. The sequence information can also be accessed via client software for PC computers (freely downloadable from the website) that enable users to make an easy selection of sequences and features of a chosen virus for further analyses. The public sequence databases contain vast amounts of data on virus genomes but accessing and comparing the data, except for relatively small sets of related viruses can be very time consuming. The procedure is made difficult because some of the sequences on these databases are incorrectly named, poorly annotated or redundant. The NCBI Reference Sequence project (1) provides a comprehensive, integrated, non-redundant set of sequences, including genomic DNA, transcript (RNA) and protein products, for major research organisms. This now includes curated information for a single sequence of each fully sequenced virus species. While this is a welcome development, it can only deal with complete sequences. An important feature of DPV is the opportunity to access genes (and other features) of multiple sequences quickly and accurately. Thus, for example, it is easy to obtain the nucleotide or amino acid sequences of all the available accessions of the coat protein gene of a given virus species or for a group of viruses. To increase its usefulness further, DPVweb also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA (ssDNA) genome. Sponsors: This site is supported by the Association of Applied Biologists and the Zhejiang Academy of Agricultural Sciences, Hangzhou, People''s Republic of China.

Proper citation: Descriptions of Plant Viruses (RRID:SCR_006656) Copy   


http://inparanoid.sbc.su.se/cgi-bin/index.cgi

Collection of pairwise comparisons between 100 whole genomes generated by a fully automatic method for finding orthologs and in-paralogs between TWO species. Ortholog clusters in the InParanoid are seeded with a two-way best pairwise match, after which an algorithm for adding in-paralogs is applied. The method bypasses multiple alignments and phylogenetic trees, which can be slow and error-prone steps in classical ortholog detection. Still, it robustly detects complex orthologous relationships and assigns confidence values for in-paralogs. The original data sets can be downloaded.

Proper citation: InParanoid: Eukaryotic Ortholog Groups (RRID:SCR_006801) Copy   


  • RRID:SCR_011846

    This resource has 50+ mentions.

http://tagcleaner.sourceforge.net/

A software tool which can automatically detect and efficiently remove tag sequences from genomic and metagenomic datasets.

Proper citation: TagCleaner (RRID:SCR_011846) Copy   


https://code.google.com/p/ontology-for-genetic-interval/

An ontology that formalized the genomic element by defining an upper class genetic interval using BFO as its framework. The definition of genetic interval is the spatial continuous physical entity which contains ordered genomic sets (DNA, RNA, Allele, Marker,etc.) between and including two points (Nucleic_Acid_Base_Residue) on a chromosome or RNA molecule which must have a liner primary sequence structure.

Proper citation: Ontology for Genetic Interval (RRID:SCR_003423) Copy   


  • RRID:SCR_005799

    This resource has 50+ mentions.

http://smd.stanford.edu/cgi-bin/source/sourceSearch

SOURCE compiles information from several publicly accessible databases, including UniGene, dbEST, UniProt Knowledgebase, GeneMap99, RHdb, GeneCards and LocusLink. GO terms associated with LocusLink entries appear in SOURCE. The mission of SOURCE is to provide a unique scientific resource that pools publicly available data commonly sought after for any clone, GenBank accession number, or gene. SOURCE is specifically designed to facilitate the analysis of large sets of data that biologists can now produce using genome-scale experimental approaches Platform: Online tool

Proper citation: SOURCE (RRID:SCR_005799) Copy   


  • RRID:SCR_009402

    This resource has 1+ mentions.

http://www.daimi.au.dk/%7Emailund/SNPFile/

Software library and API for manipulating large SNP datasets with associated meta-data, such as marker names, marker locations, individuals'' phenotypes, etc. in an I/O efficient binary file format. In its core, SNPFile assumes very little about the metadata associated with markers and individuals, but leaves this up to application program protocols. (entry from Genetic Analysis Software)

Proper citation: SNPFILE (RRID:SCR_009402) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X