Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_006489

    This resource has 1+ mentions.

http://www.informatics.jax.org/searches/GO_form.shtml

With the MGI GO Browser, you can search for a GO term and view all mouse genes annotated to the term or any subterms. You can also browse the ontologies to view relationships between terms, term definitions, as well as the number of mouse genes annotated to a given term and its subterms. The MGI GO browser directly accesses the GO data in the MGI database, which is updated nightly. Platform: Online tool

Proper citation: MGI GO Browser (RRID:SCR_006489) Copy   


http://www.fda.gov/ScienceResearch/BioinformaticsTools/Arraytrack/default.htm

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 23,2023. Software tool developed for ArrayTrack that takes a list of genes and identifies terms in Gene Ontology associated with those genes. GOFFA provides tools to view/access the following: GO term hierarchy, full listing of GO terms annotated with the genes associated with a given term, Fisher's exact test p-value providing the probability of identifying that many genes for a given term by chance alone, and relative enrichment factor (E-value) giving the enrichment of a GO term for genes in the submitted list relative to the frequency of genes assigned to that term from the full set of GOFFA annotated genes for a particular species.

Proper citation: Gene Ontology For Functional Analysis (GOFFA) (RRID:SCR_006484) Copy   


http://www.informatics.jax.org/mgihome/GO/project.shtml

This resource is part of the Gene Ontology Consortium which seeks to provide controlled vocabularies for the description of the molecular function, biological process, and cellular component of gene products. These terms are to be used as attributes of gene products by collaborating databases, facilitating uniform queries across them. GO team members at MGI participate in ontology development, outreach, and functional curation of mouse gene products. The GO vocabularies have a hierarchical structure that permits a range of detail from high-level, broadly descriptive terms to very low level, highly specific terms. This broad range is useful both in annotating genes and in searching for gene information using these terms as search criteria. GO terms are defined, allowing all databases to use the terms consistently and properly. GO annotations in the databases additionally include the publication reference which allowed the association to be made and an evidence statement citing how the association was determined.

Proper citation: Mouse Genome Informatics: The Gene Ontology Project (RRID:SCR_006447) Copy   


  • RRID:SCR_006596

    This resource has 10+ mentions.

http://www.ebi.ac.uk/ontology-lookup/

Interactive and programmatic interfaces to query, browse and navigate an increasing number of biomedical ontologies and controlled vocabularies. It provides a web service interface to query multiple ontologies from a single location with a unified output format. It can integrate any ontology available in the Open Biomedical Ontology (OBO) format. The database can be queried to obtain information on a single term or to browse a complete ontology using AJAX. Auto-completion provides a user-friendly search mechanism. An AJAX-based ontology viewer is available to browse a complete ontology or subsets of it. A weekly MySQL database export file can be downloaded from the EBI public FTP directory.

Proper citation: Ontology Lookup Service (RRID:SCR_006596) Copy   


  • RRID:SCR_006627

    This resource has 1+ mentions.

https://wiki.nci.nih.gov/display/LexEVS/LexGrid

LexGrid (Lexical Grid) provides support for a distributed network of lexical resources such as terminologies and ontologies via standards-based tools, storage formats, and access/update mechanisms. The Lexical Grid Vision is for a distributed network of terminological resources. It is the foundation of the National Center for Biomedical Ontology BioPortal interface and web-services, and can parse OBO format, as well as other formats such as OWL. Currently, there are many terminologies and ontologies in existence. Just about every terminology has its own format, its own set of tools, and its own update mechanisms. The only thing that most of these pieces have in common with each other is their incompatibility. This makes it very hard to use these resources to their full potential. We have designed the Lexical Grid as a way to bridge terminologies and ontologies with a common set of tools, formats and update mechanisms. The Lexical Grid is: * accessible through a set of common APIs * joined through shared indices * online accessible * downloadable * loosely coupled * locally extendable * globally revised * available in web-space on web-time * cross-linked The realization of this vision requires three interlocking components, which are: * Standards - access methods and formats need to be published and openly available * Tools - standards based tools must be readily available * Content - commonly used terminologies have to be available for access and download Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: LexGrid (RRID:SCR_006627) Copy   


  • RRID:SCR_006714

    This resource has 100+ mentions.

http://www.innatedb.com

Publicly available database of the genes, proteins, experimentally-verified interactions and signaling pathways involved in the innate immune response of humans, mice and bovines to microbial infection. The database captures coverage of the innate immunity interactome by integrating known interactions and pathways from major public databases together with manually-curated data into a centralized resource. The database can be mined as a knowledgebase or used with the integrated bioinformatics and visualization tools for the systems level analysis of the innate immune response. Although InnateDB curation focuses on innate immunity-relevant interactions and pathways, it also incorporates detailed annotation on the entire human, mouse and bovine interactomes by integrating data (178,000+ interactions & 3,900+ pathways) from several of the major public interaction and pathway databases. InnateDB also has integrated human, mouse and bovine orthology predictions generated using Ortholgue software. Ortholgue uses a phylogenetic distance-based method to identify possible paralogs in high-throughput orthology predictions. Integrated human and mouse conserved gene order and synteny information has also been determined to provide further support for orthology predictions. InnateDB Capabilities: * View statistics for manually-curated innate immunity relevant molecular interactions. New manually curated interactions are submitted weekly. * Search for genes and proteins of interest. * Search for experimentally-verified molecular interactions by gene/protein name, interaction type, cell type, etc. * Search genes/interactions belonging to 3,900 pathways. * Visualize interactions using an intuitive subcellular localization-based layout in Cerebral. * Upload your own list of genes along with associated gene expression data (from up to 10 experimental conditions) to interactively analyze this data in a molecular interaction network context. Once you have uploaded your data, you will be able to interactively visualize interaction networks with expression data overlaid; carry out Pathway, Gene Ontology and Transcription Factor Binding Site over-representation analyses; construct orthologous interaction networks in other species; and much more. * Access curated interaction data via a dedicated PSICQUIC webservice.

Proper citation: InnateDB (RRID:SCR_006714) Copy   


http://pathways.mcdb.ucla.edu/algal/

Tools to search gene lists for functional term enrichment as well as to dynamically visualize proteins onto pathway maps. Additionally, integrated expression data may be used to discover similarly expressed genes based on a starting gene of interest.

Proper citation: Algal Functional Annotation Tool (RRID:SCR_012034) Copy   


http://www.patika.org/

The human pathway database which contains different biological entities and reactions and software tools for analysis. PATIKA Database integrates data from several sources, including Entrez Gene, UniProt, PubChem, GO, IntAct, HPRD, and Reactome. Users can query and access this data using the PATIKAweb query interface. Users can also save their results in XML or export to common picture formats. The BioPAX and SBML exporters can be used as part of this Web service.

Proper citation: Pathway Analysis Tool for Integration and Knowledge Acquisition (RRID:SCR_002100) Copy   


  • RRID:SCR_005806

    This resource has 10+ mentions.

http://go.princeton.edu/cgi-bin/GOTermMapper

The Generic GO Term Mapper finds the GO terms shared among a list of genes from your organism of choice within a slim ontology, allowing them to be binned into broader categories. The user may optionally provide a custom gene association file or slim ontology, or a custom list of slim terms. The implementation of this Generic GO Term Mapper uses map2slim.pl script written by Chris Mungall at Berkeley Drosophila Genome Project, and some of the modules included in the GO-TermFinder distribution written by Gavin Sherlock and Shuai Weng at Stanford University, made publicly available through the GMOD project. GO Term Mapper serves a different function than the GO Term Finder. GO Term Mapper simply bins the submitted gene list to a static set of ancestor GO terms. In contrast, GO Term Finder finds the GO terms significantly enriched in a submitted list of genes. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Generic GO Term Mapper (RRID:SCR_005806) Copy   


  • RRID:SCR_005799

    This resource has 50+ mentions.

http://smd.stanford.edu/cgi-bin/source/sourceSearch

SOURCE compiles information from several publicly accessible databases, including UniGene, dbEST, UniProt Knowledgebase, GeneMap99, RHdb, GeneCards and LocusLink. GO terms associated with LocusLink entries appear in SOURCE. The mission of SOURCE is to provide a unique scientific resource that pools publicly available data commonly sought after for any clone, GenBank accession number, or gene. SOURCE is specifically designed to facilitate the analysis of large sets of data that biologists can now produce using genome-scale experimental approaches Platform: Online tool

Proper citation: SOURCE (RRID:SCR_005799) Copy   


  • RRID:SCR_005679

    This resource has 1+ mentions.

http://gdm.fmrp.usp.br/tools_bit.php

THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 29, 2012. Gene Class Expression allows functional annotation of SAGE data using the Gene Ontology database. This tool performs searches in the GO database for each SAGE tag, making associations in the selected GO category for a level selected in the hierarchy. This system provides user-friendly data navigation and visualization for mapping SAGE data onto the gene ontology structure. This tool also provides graphical visualization of the percentage of SAGE tags in each GO category, along with confidence intervals and hypothesis testing. Platform: Online tool

Proper citation: Gene Class Expression (RRID:SCR_005679) Copy   


  • RRID:SCR_005669

    This resource has 1+ mentions.

http://vortex.cs.wayne.edu/projects.htm#Onto-Compare

Microarrays are at the center of a revolution in biotechnology, allowing researchers to screen tens of thousands of genes simultaneously. Typically, they have been used in exploratory research to help formulate hypotheses. In most cases, this phase is followed by a more focused, hypothesis driven stage in which certain specific biological processes and pathways are thought to be involved. Since a single biological process can still involve hundreds of genes, microarrays are still the preferred approach as proven by the availability of focused arrays from several manufacturers. Since focused arrays from different manufacturers use different sets of genes, each array will represent any given regulatory pathway to a different extent. We argue that a functional analysis of the arrays available should be the most important criterion used in the array selection. We developed Onto-Compare as a database that can provide this functionality, based on the GO nomenclature. Compare commercially available microarrays based on GO. User account required. Platform: Online tool

Proper citation: Onto-Compare (RRID:SCR_005669) Copy   


  • RRID:SCR_006141

    This resource has 10+ mentions.

http://www.pathbase.net/

Database of histopathology photomicrographs and macroscopic images derived from mutant or genetically manipulated mice. The database currently holds more than 1000 images of lesions from mutant mice and their inbred backgrounds and further images are being added continuously. Images can be retrieved by searching for specific lesions or class of lesion, by genetic locus, or by a wide set of parameters shown on the Advanced Search Interface. Its two key aims are: * To provide a searchable database of histopathology images derived from experimental manipulation of the mouse genome or experiments conducted on genetically manipulated mice. * A reference / didactic resource covering all aspects of mouse pathology Lesions are described according to the Pathbase pathology ontology developed by the Pathbase European Consortium, and are available at the site or on the Gene Ontology Consortium site - OBO. As this is a community resource, they encourage everyone to upload their own images, contribute comments to images and send them their feedback. Please feel free to use any of the SOAP/WSDL web services. (under development)

Proper citation: Pathbase (RRID:SCR_006141) Copy   


  • RRID:SCR_006201

    This resource has 1+ mentions.

http://code.google.com/p/behavior-ontology

An ontology consisting of two main components, an ontology of behavioral processes and an ontology of behavioral phenotypes. The behavioral process branch of NBO contains a classification of behavior processes complementing and extending the GO process ontology. The behavior phenotype branch of NBO consists of a classification of both normal and abnormal behavioral characteristics of organisms. The prime application of NBO is to provide the vocabulary that is required to integrate behavior observations within and across species. It is currently being applied by several model organism communities as well as in the description of human behavior-related disease phenotypes. The main ontology is available in both the OBO Flatfile Format and the Web Ontology Language (OWL).

Proper citation: Neurobehavior Ontology (RRID:SCR_006201) Copy   


  • RRID:SCR_018977

    This resource has 1+ mentions.

http://tools.dice-database.org/GOnet/)

Web tool for interactive Gene Ontology analysis of any biological data sources resulting in gene or protein lists.

Proper citation: GOnet (RRID:SCR_018977) Copy   


  • RRID:SCR_017330

    This resource has 100+ mentions.

https://syngoportal.org/

Evidence based, expert curated knowledge base for synapse. Universal reference for synapse research and online analysis platform for interpretation of omics data. Interactive knowledge base that accumulates available research about synapse biology using Gene Ontology annotations to novel ontology terms.

Proper citation: SynGO (RRID:SCR_017330) Copy   


http://www.informatics.jax.org

International database for laboratory mouse. Data offered by The Jackson Laboratory includes information on integrated genetic, genomic, and biological data. MGI creates and maintains integrated representation of mouse genetic, genomic, expression, and phenotype data and develops reference data set and consensus data views, synthesizes comparative genomic data between mouse and other mammals, maintains set of links and collaborations with other bioinformatics resources, develops and supports analysis and data submission tools, and provides technical support for database users. Projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, and MouseCyc Project at MGI.

Proper citation: Mouse Genome Informatics (MGI) (RRID:SCR_006460) Copy   


http://omicslab.genetics.ac.cn/GOEAST/

Gene Ontology Enrichment Analysis Software Toolkit (GOEAST) is a web based software toolkit providing easy to use, visualizable, comprehensive and unbiased Gene Ontology (GO) analysis for high-throughput experimental results, especially for results from microarray hybridization experiments. The main function of GOEAST is to identify significantly enriched GO terms among give lists of genes using accurate statistical methods. Compared with available GO analysis tools, GOEAST has the following unique features: * GOEAST supports analysis for data from various resources, such as expression data obtained using Affymetrix, illumina, Agilent or customized microarray platforms. GOEAST also supports non-microarray based experimental data. The web-based feature makes GOEAST very user friendly; users only have to provide a list of genes in correct formats. * GOEAST provides visualizable analysis results, by generating graphs exhibiting enriched GO terms as well as their relationships in the whole GO hierarchy. * Note that GOEAST generates separate graph for each of the three GO categories, namely biological process, molecular function and cellular component. * GOEAST allows comparison of results from multiple experiments (see Multi-GOEAST tool). The displayed color of each GO term node in graphs generated by Multi-GOEAST is the combination of different colors used in individual GOEAST analysis. Platform: Online tool

Proper citation: GOEAST - Gene Ontology Enrichment Analysis Software Toolkit (RRID:SCR_006580) Copy   


  • RRID:SCR_006385

    This resource has 1+ mentions.

http://gtlinker.cnb.csic.es/

Web application that filters and links enriched output data identifying sets of associated genes and terms, producing metagroups of coherent biological significance. The method uses fuzzy reciprocal linkage between genes and terms to unravel their functional convergence and associations. It can also be accessed through its web service.

Proper citation: GeneTerm Linker (RRID:SCR_006385) Copy   


  • RRID:SCR_006250

    This resource has 100+ mentions.

http://genetrail.bioinf.uni-sb.de/

A web-based application that analyzes gene sets for statistically significant accumulations of genes that belong to some functional category. Considered category types are: KEGG Pathways, TRANSPATH Pathways, TRANSFAC Transcription Factor, GeneOntology Categories, Genomic Localization, Protein-Protein Interactions, Coiled-coil domains, Granzyme-B clevage sites, and ELR/RGD motifs. The web server provides two statistical approaches, "Over-Representation Analysis" (ORA) comparing a reference set of genes to a test set, and "Gene Set Enrichment Analysis" (GSEA) scoring sorted lists of genes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GeneTrail (RRID:SCR_006250) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X