Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://factory.euromov.eu/sml/index.php
Open source Java library dedicated to semantic measures computation and analysis. Tools based on the SML are also provided through the SML-Toolkit, a command line software giving access to some of the functionalities of the library. The SML and the toolkit can be used to compute semantic similarity and semantic relatedness between semantic elements (e.g. concepts, terms) or entities semantically characterized (e.g. entities defined in a semantic graph, documents annotated by concepts defined in an ontology).
Proper citation: Semantic Measures Library (RRID:SCR_001383) Copy
http://amigo.geneontology.org/
Web tool to search, sort, analyze, visualize and download data of interest. Along with providing details of the ontologies, gene products and annotations, features a BLAST search, Term Enrichment and GO Slimmer tools, the GO Online SQL Environment and a user help guide.Used at the Gene Ontology (GO) website to access the data provided by the GO Consortium. Developed and maintained by the GO Consortium.
Proper citation: AmiGO (RRID:SCR_002143) Copy
Suite of motif-based sequence analysis tools to discover motifs using MEME, DREME (DNA only) or GLAM2 on groups of related DNA or protein sequences; search sequence databases with motifs using MAST, FIMO, MCAST or GLAM2SCAN; compare a motif to all motifs in a database of motifs; associate motifs with Gene Ontology terms via their putative target genes, and analyze motif enrichment using SpaMo or CentriMo. Source code, binaries and a web server are freely available for noncommercial use.
Proper citation: MEME Suite - Motif-based sequence analysis tools (RRID:SCR_001783) Copy
http://tools.dice-database.org/GOnet/)
Web tool for interactive Gene Ontology analysis of any biological data sources resulting in gene or protein lists.
Proper citation: GOnet (RRID:SCR_018977) Copy
http://gmod.org/wiki/Flash_GViewer
Flash GViewer is a customizable Flash movie that can be easily inserted into a web page to display each chromosome in a genome along with the locations of individual features on the chromosomes. It is intended to provide an overview of the genomic locations of a specific set of features - eg. genes and QTLs associated with a specific phenotype, etc. rather than as a way to view all features on the genome. The features can hyperlink out to a detail page to enable to GViewer to be used as a navigation tool. In addition the bands on the chromosomes can link to defineable URL and new region selection sliders can be used to select a specific chromosome region and then link out to a genome browser for higher resolution information. Genome maps for Rat, Mouse, Human and C. elegans are provided but other genome maps can be easily created. Annotation data can be provided as static text files or produced as XML via server scripts. This tool is not GO-specific, but was built for the purpose of viewing GO annotation data. Platform: Online tool
Proper citation: Flash Gviewer (RRID:SCR_012870) Copy
Natural Antisense Transcripts (NATs), a kind of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and/or pathological processes. PlantNATsDB (Plant Natural Antisense Transcripts DataBase) is a platform for annotating and discovering NATs by integrating various data sources involving approximately 2 million NAT pairs in 69 plant species. PlantNATsDB also provides an integrative, interactive and information-rich web graphical interface to display multidimensional data, and facilitate plant research community and the discovery of functional NATs. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. A ''''Gene Set Analysis'''' module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs.
Proper citation: PlantNATsDB - Plant Natural Antisense Transcripts DataBase (RRID:SCR_013278) Copy
https://omictools.com/l2l-tool
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 26, 2019.
Database of published microarray gene expression data, and a software tool for comparing that published data to a user''''s own microarray results. It is very simple to use - all you need is a web browser and a list of the probes that went up or down in your experiment. If you find L2L useful please consider contributing your published data to the L2L Microarray Database in the form of list files. L2L finds true biological patterns in gene expression data by systematically comparing your own list of genes to lists of genes that have been experimentally determined to be co-expressed in response to a particular stimulus - in other words, published lists of microarray results. The patterns it finds can point to the underlying disease process or affected molecular function that actually generated the observed changed in gene expression. Its insights are far more systematic than critical gene analyses, and more biologically relevant than pure Gene Ontology-based analyses. The publications included in the L2L MDB initially reflected topics thought to be related to Cockayne syndrome: aging, cancer, and DNA damage. Since then, the scope of the publications included has expanded considerably, to include chromatin structure, immune and inflammatory mediators, the hypoxic response, adipogenesis, growth factors, hormones, cell cycle regulators, and others. Despite the parochial origins of the database, the wide range of topics covered will make L2L of general interest to any investigator using microarrays to study human biology. In addition to the L2L Microarray Database, L2L contains three sets of lists derived from Gene Ontology categories: Biological Process, Cellular Component, and Molecular Function. As with the L2L MDB, each GO sub-category is represented by a text file that contains annotation information and a list of the HUGO symbols of the genes assigned to that sub-category or any of its descendants. You don''''t need to download L2L to use it to analyze your microarray data. There is an easy-to-use web-based analysis tool, and you have the option of downloading your results so you can view them at any time on your own computer, using any web browser. However, if you prefer, the entire L2L project, and all of its components, can be downloaded from the download page. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: L2L Microarray Analysis Tool (RRID:SCR_013440) Copy
Database for ESTs (Expressed Sequence Tags), consensus sequences, bacterial artificial chromosome (BAC) clones, BES (BAC End Sequences). They have generated 69,545 ESTs from 6 full-length cDNA libraries (Porcine Abdominal Fat, Porcine Fat Cell, Porcine Loin Muscle, Liver and Pituitary gland). They have also identified a total of 182 BAC contigs from chromosome 6. It is very valuable resources to study porcine quantitative trait loci (QTL) mapping and genome study. Users can explore genomic alignment of various data types, including expressed sequence tags (ESTs), consensus sequences, singletons, QTL, Marker, UniGene and BAC clones by several options. To estimate the genomic location of sequence dataset, their data aligned BES (BAC End Sequences) instead of genomic sequence because Pig Genome has low-coverage sequencing data. Sus scrofa Genome Database mainly provide comparative map of four species (pig, cattle, dog and mouse) in chromosome 6.
Proper citation: PiGenome (RRID:SCR_013394) Copy
A publicly accessible knowledgebase about protein-protein, protein-lipid, protein-small molecules, ligand-receptor interactions, receptor-cell type information, transcriptional regulatory and signal transduction modules relevant to inflammation, cell migration and tumourigenesis. It integrates in-house curated information from the literature, biochemical experiments, functional assays and in vivo studies, with publicly available information from multiple and diverse sources across human, rat, mouse, fly, worm and yeast. The knowledgebase allowing users to search and to dynamically generate visual representations of protein-protein interactions and transcriptional regulatory networks. Signalling and transcriptional modules can also be displayed singly or in combination. This allow users to identify important "cross-talks" between signalling modules via connections with key components or "hubs". The knowledgebase will facilitate a "systems-wide" understanding across many protein, signalling and transcriptional regulatory networks triggered by multiple environmental cues, and also serve as a platform for future efforts to computationally and mathematically model the system behavior of inflammatory processes and tumourigenesis.
Proper citation: pSTIING (RRID:SCR_002045) Copy
http://genome.crg.es/GOToolBox/
The GOToolBox web server provides a series of programs allowing the functional investigation of groups of genes, based on the Gene Ontology resource. The web version of the GOToolBox is free for non-commercial users only. Users from commercial companies are allowed to use the site during a reasonable testing period. For a regular use of the web version, a license fee should be paid. We have developed methods and tools based on the Gene Ontology (GO) resource allowing the identification of statistically over- or under-represented terms in a gene dataset; the clustering of functionally related genes within a set; and the retrieval of genes sharing annotations with a query gene. GO annotations can also be constrained to a slim hierarchy or a given level of the ontology. The source codes are available upon request, and distributed under the GPL license. Platform: Online tool
Proper citation: GOToolBox Functional Investigation of Gene Datasets (RRID:SCR_003192) Copy
http://biomine.cs.helsinki.fi/
Service that integrates cross-references from several biological databases into a graph model with multiple types of edges, such as protein interactions, gene-disease associations and gene ontology annotations. Edges are weighted based on their type, reliability, and informativeness. In particular, it formulates protein interaction prediction and disease gene prioritization tasks as instances of link prediction. The predictions are based on a proximity measure computed on the integrated graph.
Proper citation: Biomine (RRID:SCR_003552) Copy
http://kt.ijs.si/software/SEGS/
A web tool for descriptive analysis of microarray data. The analysis is performed by looking for descriptions of gene sets that are statistically significantly over- or under-expressed between different scenarios within the context of a genome-scale experiments (DNA microarray). Descriptions are defined by using the terms from the Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene-gene interactions found in the ENTREZ database. Gene annotations by GO and KEGG terms can also be found in the ENTREZ database. The tool provides three procedures for testing the enrichment of the gene sets (over- or under-expressed): Fisher's exact test, GSEA and PAGE, and option for combining the results of the tests. Because of the multiple-hypothesis testing nature of the problem, all the p-values are computed using the permutation testing method.
Proper citation: SEGS (RRID:SCR_003554) Copy
One of the key challenges in the analysis of gene expression data is how to relate the expression level of individual genes to the underlying transcriptional programs and cellular state. The T-profiler tool hosted on this website uses the t-test to score changes in the average activity of pre-defined groups of genes. The gene groups are defined based on Gene Ontology categorization, ChIP-chip experiments, upstream matches to a consensus transcription factor binding motif, and location on the same chromosome, respectively. If desired, an iterative procedure can be used to select a single, optimal representative from sets of overlapping gene groups. A jack-knife procedure is used to make calculations more robust against outliers. T-profiler makes it possible to interpret microarray data in a way that is both intuitive and statistically rigorous, without the need to combine experiments or choose parameters. Currently, gene expression data from Saccharomyces cerevisiae and Candida albicans are supported. Users can submit their microarray data for analysis by clicking on one of the two organism-specific tabs above. Platform: Online tool
Proper citation: T-profiler (RRID:SCR_003452) Copy
An information management framework for comprehensive ion channel information. It is a knowledge base system centered on genetically expressed ion channel models and it encourages researchers of the field to contribute, build and refine the information through an interactive wiki-like interface. It is web-based, freely accessible and currently contains 187 annotated ion channels with 50 Hodgkin-Huxley models (September 2014). Channelepdia provides an ideal platform to collectively build ion channel knowledge base by accommodating both structured and unstructured data. The current version of Channelpedia contains the following sections : Introduction, Genes, Ontologies, Interactions, Structure, Expression, Distribution, Function, Kinetics and Models. Newly published literature related to ion channels is automatically queried every week from PubMed and added to respective categories. Currently, Channelpedia contains ~180,000 abstracts related to ion channels from Pubmed.
Proper citation: ChannelPedia (RRID:SCR_003807) Copy
A web-based tool to support meta-analysis of multiple gene-expression data sets, as well as to enable integration of data sets from gene expression and metabolomics experiments. INMEX contains three functional modules. The data preparation module supports flexible data processing, annotation and visualization of individual data sets. The statistical analysis module allows researchers to combine multiple data sets based on P-values, effect sizes, rank orders and other features. The significant genes can be examined in functional analysis module for enriched Gene Ontology terms or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, or expression profile visualization. INMEX has built-in support for common gene/metabolite identifiers (IDs), as well as 45 popular microarray platforms for human, mouse and rat. Complex operations are performed through a user-friendly web interface in a step-by-step manner.
Proper citation: INMEX (RRID:SCR_004173) Copy
http://bc02.iis.sinica.edu.tw/gobu/manual/index.html
Gene Ontology Browsing Utility (GOBU) (GOBU) is a Java-based software program for integrating biological annotation catalogs under an extendable software architecture. Users may interact with the Gene Ontology and user-defined hierarchy data of genes, and then use its plugins to (and not limited to) (1) browse the GO hierarchy with user defined data, (2) browse GO-oriented expression levels in the user data, (3) compute GO enrichment, and/or (4) customize data reporting. A set of classes and utility functions has been established so that a customized program can be made as a plugin or a command-line tool that programmically manipulate the Gene Ontology and specified user data. See the source code repository for examples. Reference Lin WD, Chen YC, Ho JM, Hsiao CD. GOBU: Toward an Integration Interface for Biological Objects. Journal of Information Science and Engineering. 2006 22(1):19-29. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: Gene Ontology Browsing Utility (GOBU) (RRID:SCR_005662) Copy
http://owlapi.sourceforge.net/
The OWL API is a Java API and reference implementation for creating, manipulating and serializing OWL Ontologies. The latest version of the API is focused towards OWL 2. The OWLAPI underpins ontology browsing and editing tools and platforms such as SWOOP and Protege4. Note that this API, or any other OWL-based API, can be used without an integrated OWL parser if you download a pre-converted OWL file generated from OBO. See OBO Ontologies List for all OBO ontologies converted to OWL (we do not list the full complement of OWL-based APIs here, only those of direct relevance to GO). The OWL API includes the following components: * An API for OWL 2 and an efficient in-memory reference implementation * RDF/XML parser and writer * OWL/XML parser and writer * OWL Functional Syntax parser and writer * Turtle parser and writer * KRSS parser * OBO Flat file format parser * Reasoner interfaces for working with reasoners such as FaCT++, HermiT, Pellet and Racer Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: OWL API (RRID:SCR_005734) Copy
http://discover.nci.nih.gov/gominer/
GoMiner is a tool for biological interpretation of "omic" data including data from gene expression microarrays. Omic experiments often generate lists of dozens or hundreds of genes that differ in expression between samples, raising the question, What does it all mean biologically? To answer this question, GoMiner leverages the Gene Ontology (GO) to identify the biological processes, functions and components represented in these lists. Instead of analyzing microarray results with a gene-by-gene approach, GoMiner classifies the genes into biologically coherent categories and assesses these categories. The insights gained through GoMiner can generate hypotheses to guide additional research. GoMiner displays the genes within the framework of the Gene Ontology hierarchy in two ways: * In the form of a tree, similar to that in AmiGO * In the form of a "Directed Acyclic Graph" (DAG) The program also provides: * Quantitative and statistical analysis * Seamless integration with important public databases GoMiner uses the databases provided by the GO Consortium. These databases combine information from a number of different consortium participants, include information from many different organisms and data sources, and are referenced using a variety of different gene product identification approaches.
Proper citation: GoMiner (RRID:SCR_002360) Copy
http://bioinformatics.biol.rug.nl/standalone/fiva/
Functional Information Viewer and Analyzer (FIVA) aids researchers in the prokaryotic community to quickly identify relevant biological processes following transcriptome analysis. Our software is able to assist in functional profiling of large sets of genes and generates a comprehensive overview of affected biological processes. Currently, seven different modules containing functional information have been implemented: (i) gene regulatory interactions, (ii) cluster of orthologous groups (COG) of proteins, (iii) gene ontologies (GO), (iv) metabolic pathways (v) Swiss Prot keywords, (vi) InterPro domains - and (vii) generic functional categories. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: FIVA - Functional Information Viewer and Analyzer (RRID:SCR_005776) Copy
http://ftp://ftp.geneontology.org/pub/go/www/GO.tools_by_type.term_enrichment.shtml#gobean
GoBean is a Java application for gene ontology enrichment analysis. It utilizes the NetBeans platform framework. Features * Graphical comparison of multiple enrichment analysis results * Versatile filter facility for focused analysis of enrichment results * Effective exploitation of the graphical/hierarchical structure of GO * Evidence code based association filtering * Supports local data files such as the ontology obo file and gene association files * Supports late enrichment methods and multiple testing corrections * Built-in ID conversion for common species using Ensembl biomart service Platform: Windows compatible, Mac OS X compatible, Linux compatible
Proper citation: GoBean - a Java application for Gene Ontology enrichment analysis (RRID:SCR_005808) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.