Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Open source software package for comparative sequence analysis using stochastic evolutionary models. Used for analysis of genetic sequence data in particular the inference of natural selection using techniques in phylogenetics, molecular evolution, and machine learning.
Proper citation: HyPhy (RRID:SCR_016162) Copy
Software for DNA and amino acid editing, database management, plasmid maps, It can also be used for restriction and ligation, alignments, sequencer data import, calculators, gel image display, PCR, and more.
Proper citation: Gentle (RRID:SCR_016127) Copy
http://biopp.univ-montp2.fr/wiki/index.php/Main_Page
Software providing a set of ready-to-use C++ libraries as re-usable tools to visualize, edit, print and output data for bioinformatics. It uses sequence analysis, phylogenetics, molecular evolution and population genetics to help to write programs., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Bio++ (RRID:SCR_016055) Copy
https://ihg.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl
Software tool for performing tests for deviation from Hardy-Weinberg equilibrium and tests for association. Used in population-based genetic association studies to identify susceptibility genes for complex diseases.
Proper citation: Tests for deviation from Hardy-Weinberg equilibrium (RRID:SCR_016496) Copy
Platform for analysis of the genetics of cardiovascular disease.Used for searching and analysis of human genetic information linked to myocardial infarction, atrial fibrillation and related traits while protecting the integrity and confidentiality of the data.
Proper citation: Cardiovascular Disease Knowledge Portal (RRID:SCR_016536) Copy
https://www.ncbi.nlm.nih.gov/projects/mutagene/
Software tool to explore and analyze mutagenic factors leading to tumors to decipher cancer genetic heterogeneity.
Proper citation: MutaGene (RRID:SCR_016574) Copy
http://www.jax.org/imr/index.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 08, 2012. The function of the IMR is to select, import, cryopreserve, maintain, and distribute these important strains of mice to the research community. To improve their value for research, the IMR also undertakes genetic development of stocks, such as transferring mutant genes or transgenes to defined genetic backgrounds and combining transgenes and/or targeted mutations to create new mouse models for research. The function of the IMR is to: * select biomedically important stocks of transgenic, chemically induced, and targeted mutant mice * import these stocks into the Jackson Laboratory by rederivation procedures that rid them of any pathogens they might carry * cryopreserve embryos from these stocks to protect them against accidental loss and genetic contamination * backcross the mutation onto an inbred strain, if necessary * distribute them to the scientific community More than 1000 mutant stocks have been accepted by the IMR from 1992 through December 2006. Current holdings include models for research on cancer; breast cancer; immunological and inflammatory diseases; neurological diseases; behavioral, cardiovascular and heart diseases; developmental, metabolic and other diseases; reporter (e.g., GFP) and recombinase (e.g., cre/loxP) strains. About eight strains a month are being added to the IMR holdings. Research is being conducted on improved methods for assisted reproduction and speed congenic production. Most of the targeted mutants arrive on a mixed 129xC57BL/6 genetic background, and as many of these as possible are backcrossed onto an inbred strain (usually C57BL/6J). In addition, new mouse models are being created by intercrossing carriers of specific transgenes and/or targeted mutations. Simple sequence length polymorphism DNA markers are being used to characterize and evaluate differences between inbred strains, substrains, and embryonic stem cell lines.
Proper citation: Induced Mutant Resource (RRID:SCR_008366) Copy
http://www.oege.org/software/hwe-mr-calc.shtml
This portal leads to the Chi-sq Hardy-Weinberg equilibrium test calculator for biallelic markers (SNPs, indels etc), including analysis for ascertainment bias for dominant/recessive models (due to biological or technical causes.) The purpose of this web program is for estimating possible missingness and an approach to evaluating missingness under different genetic models. Mendelian randomization (MR) permits causal inference between exposures and a disease. It can be compared with randomized controlled trials. Whereas in a randomized controlled trial the randomization occurs at entry into the trial, in MR the randomization occurs during gamete formation and conception. Several factors, including time since conception and sampling variation, are relevant to the interpretation of an MR test. Particularly important is consideration of the missingness of genotypes that can be originated by chance, genotyping errors, or clinical ascertainment. Testing for Hardy-Weinberg equilibrium (HWE) is a genetic approach that permits evaluation of missingness. Through this tool, the authors demonstrate evidence of nonconformity with HWE in real data. They also perform simulations to characterize the sensitivity of HWE tests to missingness. Unresolved missingness could lead to a false rejection of causality in an MR investigation of trait-disease association. These results indicate that large-scale studies, very high quality genotyping data, and detailed knowledge of the life-course genetics of the alleles/genotypes studied will largely mitigate this risk. Sponsors: This resource is supported by an Intermediate Fellowship (grant FS/05/065/19497) from the British Heart Foundation.
Proper citation: Hardy-Weinberg Equilibrium Calculator (RRID:SCR_008371) Copy
The project began as a pilot study to identify inherited genetic susceptibility to prostate and breast cancer. CGEMS has developed into a robust research program involving genome-wide association studies (GWASs) for a number of cancers to identify common genetic variants that affect a person''s risk of developing cancer. In collaboration with extramural scientists, NCI''s Division of Cancer Epidemiology and Genetics (DCEG) has carried out genome-wide scans for breast, prostate, pancreatic, and lung cancers, while a GWAS of bladder cancer is currently underway. By making the data available to both intramural and extramural research scientists, as well as those in the private sector through rapid posting, NIH can leverage its resources to ensure that the dramatic advances in genomics are incorporated into rigorous population-based studies. Ultimately, findings from these studies may yield new preventive, diagnostic, and therapeutic interventions for cancer. Sponsors: This resource is supported by the U.S. National Institues Of Health.
Proper citation: CGEMS (RRID:SCR_008445) Copy
Center for the study of non-human primates. Its mission is the study and use of non-human primates as models for studies of social and biological interactions and for the discovery of methods of prevention, diagnosis and treatment of diseases that afflict humans. Through the stewardship of three unique facilities—Cayo Santiago Field Station, Sabana Seca Field Station, and the Laboratory of Primate Morphology supports a diverse range of research programs that enhance understanding of primate biology and behavior, with direct applications in biomedical and translational research.
Proper citation: Caribbean Primate Research Center (RRID:SCR_008345) Copy
Center that supports studies of nonhuman primate models of human diseases, including common chronic diseases and infectious diseases and the effects that genetics and the environment have on physiological processes and disease susceptibility. SNPRC encourages the use of its resources by investigators from the national and international biomedical research communities.
Proper citation: Southwest National Primate Research Center (RRID:SCR_008292) Copy
Web application for simulating SNP genotypes for case-control and affected-child trio studies by resampling from Phase I/II HapMap SNP data. The user provides a list of SNPs to be genotyped, along with a disease model file that describes causal SNPs and their effect sizes. The simulation tool is appropriate for candidate regions or whole-genome scans. (entry from Genetic Analysis Software)
Proper citation: HAP-SAMPLE (RRID:SCR_009234) Copy
http://pages.stat.wisc.edu/~yandell/qtl/software/qtlbim/
Software library for QTL Bayesian Interval Mapping that provides a Bayesian model selection approach to map multiple interacting QTL. It works on experimentally inbred lines and performs a genome-wide search to locate multiple potential QTL. The package can handle continuous, binary and ordinal traits. (entry from Genetic Analysis Software)
Proper citation: R/QTLBIM (RRID:SCR_009375) Copy
http://wpicr.wpic.pitt.edu/WPICCompGen/blocks.htm
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. Software application aiming at identifying haplotype blocks. The likelihood of the data is calculated minus the model complexity. The resulting blocks have very low diversity and the linkage disequilibrium with SNP's outside the blocks is low. (entry from Genetic Analysis Software)
Proper citation: ENTROPY BLOCKER (RRID:SCR_000123) Copy
http://www.homozygositymapper.org/
A web-based approach of homozygosity mapping that can handle tens of thousands markers. User can upload their own SNP genotype files to the database. Intuitive graphic interface is provided to view the homozygous stretches, with the ability of zooming into single chromosomes or user-defined chromosome regions. The underlying genotypes in all samples are displayed. The software is also integrated with our candidate gene search engine, GeneDistiller, so that users can interactively determine the most promising gene. (entry from Genetic Analysis Software)
Proper citation: HOMOZYGOSITYMAPPER (RRID:SCR_001714) Copy
http://eyegene.ophthy.med.umich.edu/madeline/
Software tool designed for preparing, visualizing, and exploring human pedigree data used in genetic linkage studies. It converts pedigree and marker data into formats required by popular linkage analysis packages, provides powerful ways to query pedigree data sets, and produces Postscript pedigree drawings that are useful for rapid data review.
Proper citation: MADELINE (RRID:SCR_001979) Copy
http://www.depressiontools.org/
Online instrument that estimates whether a biomarker predicting outcome of depression treatment is likely to be clinically significant.
Proper citation: DepressionTools.org Clinical Significance Calculator (RRID:SCR_003873) Copy
http://analysis2.bio-x.cn/myAnalysis.php
A powerful web-based platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci.
Proper citation: SHEsis: Analysis Tools For Random Samples (RRID:SCR_002958) Copy
http://www.daimi.au.dk/%7Emailund/SNPFile/
Software library and API for manipulating large SNP datasets with associated meta-data, such as marker names, marker locations, individuals'' phenotypes, etc. in an I/O efficient binary file format. In its core, SNPFile assumes very little about the metadata associated with markers and individuals, but leaves this up to application program protocols. (entry from Genetic Analysis Software)
Proper citation: SNPFILE (RRID:SCR_009402) Copy
http://www.plexdb.org/index.php
PLEXdb (Plant Expression Database) is a unified gene expression resource for plants and plant pathogens. PLEXdb is a genotype to phenotype, hypothesis building information warehouse, leveraging highly parallel expression data with seamless portals to related genetic, physical, and pathway data. The integrated tools of PLEXdb allow investigators to use commonalities in plant biology for a comparative approach to functional genomics through use of large-scale expression profiling data sets.
Proper citation: PLEXdb - Plant Expression Database (RRID:SCR_006963) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.