Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://wwwmgs.bionet.nsc.ru/mgs/gnw/about.shtml
GeneNetWorks is designed for accumulation of experimental data, data navigation, data analysis, and analysis of dependencies in the field of gene expression regulation. It integrates the databases and programs for processing the data about structure and function of DNA, RNA, and proteins, together with the other information resources important for gene expression description. The unique property of above described system is that all the resources within the system GeneNetWorks are divided according to the natural hierarchy of molecular genetic systems and has the following levels: (1) DNA; (2) RNA; (3) proteins; and (4) gene networks. Each module contains: 1) experimental data represented as a database or some sample; 2) program for data analysis; 3) results of an automated data processing; 4) tools for the graphical representation of these data and the results of the data analyses.
Proper citation: GeneNetWorks (RRID:SCR_008034) Copy
The objective of this project is to develop physical maps of the sorghum and rice genomes, based on BAC contigs that are cross-linked to each other and also to genetic maps and BAC islands for other large-genome crops and a library of ca. 50,000 expressed-sequence tags (EST''s) and corresponding cDNA clones, from diverse sorghum organs and developmental states. It also aims to improve understanding of genetic diversity and allelic richness that might be harbored ex situ (in gene banks) or in situ (in nature), and refine techniques for assesing allelic richness and Expedite data acquisition and utilization by a sound parnership between laboratory scientists and computational biologists. Specific goals of developing physical maps of sorghum and rice genomes include: -Enrich cross-links between sorghum and rice by mapping additional rice probes on sorghum. -Apply mapped DNA probes to macroarrays of sorghum, sugarcane, rice, and maize BACs. -Fingerprint 10x BAC libraries of Sorghum bicolor and S. propinquum. Libraries presently 3x and 6x respectively, to be expanded to 10x each. -Use fragment-matching (BAC-RF) method to determine locus-specificity in polyploids. - Contig assembly based on 1-3, plus rice BAC fingerprints generated under a separate Novartis project. -Evaluate methodology for rapid high-throughput assignment of new ESTs to BACs. -Conduct genomic sequencing in a region duplicated in both sorghum and arabidopsis. Selected BACs from sorghum(2), sugarcane, maize, rice, wheat. By improving the understanding of genetic diversity and allelic richness, the goal is to: -Sequence previously mapped sorghum DNA probes. -Discover & characterize 100 single nucleotide polymorphisms (SNPs) from cDNA markers. -Develop colorimetric high-throughput genotyping assays, and utilize to assess genetic diversity in geographically- and phenotypically-diverse sorghums. -Develop colorimetric high-throughput asssays for identifying phytochrome allelic variation, and apply these assays to a core collection representing a large set of genetic resources. -Support informatics group to streamline cataloging of DNA-level information relevant to large genetic resources collections. Lastly, the goals of expediting data acquisition and utilization include: -A new web-based resource for 3D-integration and visualization of structural and functional genomic data will be developed. -New sequence assembly and alignment software SABER (Sequence AssemBly in the presence of ERror), and PRIMAL(Practical RIgorous Multiple ALignment), will be evaluated with reference to existing standards (PHRED, PHRAP). -Specialized image processing and image analysis tools will be developed for acquistion and interpretation of qualitative and quantitative hybridization signals. To deal expeditiously with large volumes of data, parallel processing approaches will be investigated. Sponsors: * National Science Foundation (NSF) * National Sorghum Producers * University of Georgia Research Foundation (UGARF) * Georgia Research Alliance (GRA)
Proper citation: Comparative Saccharinae Genomics Resource (RRID:SCR_008153) Copy
http://www.jax.org/imr/index.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 08, 2012. The function of the IMR is to select, import, cryopreserve, maintain, and distribute these important strains of mice to the research community. To improve their value for research, the IMR also undertakes genetic development of stocks, such as transferring mutant genes or transgenes to defined genetic backgrounds and combining transgenes and/or targeted mutations to create new mouse models for research. The function of the IMR is to: * select biomedically important stocks of transgenic, chemically induced, and targeted mutant mice * import these stocks into the Jackson Laboratory by rederivation procedures that rid them of any pathogens they might carry * cryopreserve embryos from these stocks to protect them against accidental loss and genetic contamination * backcross the mutation onto an inbred strain, if necessary * distribute them to the scientific community More than 1000 mutant stocks have been accepted by the IMR from 1992 through December 2006. Current holdings include models for research on cancer; breast cancer; immunological and inflammatory diseases; neurological diseases; behavioral, cardiovascular and heart diseases; developmental, metabolic and other diseases; reporter (e.g., GFP) and recombinase (e.g., cre/loxP) strains. About eight strains a month are being added to the IMR holdings. Research is being conducted on improved methods for assisted reproduction and speed congenic production. Most of the targeted mutants arrive on a mixed 129xC57BL/6 genetic background, and as many of these as possible are backcrossed onto an inbred strain (usually C57BL/6J). In addition, new mouse models are being created by intercrossing carriers of specific transgenes and/or targeted mutations. Simple sequence length polymorphism DNA markers are being used to characterize and evaluate differences between inbred strains, substrains, and embryonic stem cell lines.
Proper citation: Induced Mutant Resource (RRID:SCR_008366) Copy
http://www.oege.org/software/hwe-mr-calc.shtml
This portal leads to the Chi-sq Hardy-Weinberg equilibrium test calculator for biallelic markers (SNPs, indels etc), including analysis for ascertainment bias for dominant/recessive models (due to biological or technical causes.) The purpose of this web program is for estimating possible missingness and an approach to evaluating missingness under different genetic models. Mendelian randomization (MR) permits causal inference between exposures and a disease. It can be compared with randomized controlled trials. Whereas in a randomized controlled trial the randomization occurs at entry into the trial, in MR the randomization occurs during gamete formation and conception. Several factors, including time since conception and sampling variation, are relevant to the interpretation of an MR test. Particularly important is consideration of the missingness of genotypes that can be originated by chance, genotyping errors, or clinical ascertainment. Testing for Hardy-Weinberg equilibrium (HWE) is a genetic approach that permits evaluation of missingness. Through this tool, the authors demonstrate evidence of nonconformity with HWE in real data. They also perform simulations to characterize the sensitivity of HWE tests to missingness. Unresolved missingness could lead to a false rejection of causality in an MR investigation of trait-disease association. These results indicate that large-scale studies, very high quality genotyping data, and detailed knowledge of the life-course genetics of the alleles/genotypes studied will largely mitigate this risk. Sponsors: This resource is supported by an Intermediate Fellowship (grant FS/05/065/19497) from the British Heart Foundation.
Proper citation: Hardy-Weinberg Equilibrium Calculator (RRID:SCR_008371) Copy
Center for the study of non-human primates. Its mission is the study and use of non-human primates as models for studies of social and biological interactions and for the discovery of methods of prevention, diagnosis and treatment of diseases that afflict humans. Through the stewardship of three unique facilities—Cayo Santiago Field Station, Sabana Seca Field Station, and the Laboratory of Primate Morphology supports a diverse range of research programs that enhance understanding of primate biology and behavior, with direct applications in biomedical and translational research.
Proper citation: Caribbean Primate Research Center (RRID:SCR_008345) Copy
http://genewindow.nci.nih.gov/
Software tool for pre- and post-genetic bioinformatics and analytical work, developed and used at the Core Genotyping Facility (CGF) at the National Cancer Institute. While Genewindow is implemented for the human genome and integrated with the CGF laboratory data, it stands as a useful tool to assist investigators in the selection of variants for study in vitro, or in novel genetic association studies. The Genewindow application and source code is publicly available for use in other genomes, and can be integrated with the analysis, storage, and archiving of data generated in any laboratory setting. This can assist laboratories in the choice and tracking of information related to genetic annotations, including variations and genomic positions. Features of GeneWindow include: -Intuitive representation of genomic variation using advanced web-based graphics (SVG) -Search by HUGO gene symbol, dbSNP ID, internal CGF polymorphism ID, or chromosome coordinates -Gene-centric display (only when a gene of interest is in view) oriented 5 to 3 regardless of the reference strand and adjacent genes -Two views, a Locus Overview, which varies in size depending on the gene or genomic region being viewed and, below it, a Sequence View displaying 2000 base pairs within the overview -Navigate the genome by clicking along the gene in the Locus Overview to change the Sequence View, expand or contract the genomic interval, or shift the view in the 5 or 3 direction (relative to the current gene) -Lists of available genomic features -Search for sequence matches in the Locus Overview -Genomic features are represented by shape, color and opacity with contextual information visible when the user moves over or clicks on a feature -Administrators can insert newly-discovered polymorphisms into the Genewindow database by entering annotations directly through the GUI -Integration with a Laboratory Information Management System (LIMS) or other databases is possible
Proper citation: GeneWindow (RRID:SCR_008183) Copy
http://www.dkfz.de/en/epidemiologie-krebserkrankungen/software/software.html
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 24,2023. Software program that performs estimation of power and sample sizes required to detect genetic and environmental main, as well as gene-environment interaction (GxE) effects in indirect matched case-control studies (1:1 matching). When the hypothesis of GxE is tested, power/sample size will be estimated for the detection of GxE, as well as for the detection of genetic and environmental marginal effects. Furthermore, power estimation is implemented for the joint test of genetic marginal and GxE effects (Kraft P et al., 2007). Power and sample size estimations are based on Gauderman''s (2002) asymptotic approach for power and sample size estimations in direct studies of GxE. Hardy-Weinberg equilibrium and independence of genotypes and environmental exposures in the population are assumed. The estimates are based on genotypic codes (G=1 (G=0) for individuals who carry a (non-) risk genotype), which depend on the mode of inheritance (dominant, recessive, or multiplicative). A conditional logistic regression approach is used, which employs a likelihood-ratio test with respect to a biallelic candidate SNP, a binary environmental factor (E=1 (E=0) in (un)exposed individuals), and the interaction between these components. (entry from Genetic Analysis Software)
Proper citation: PIAGE (RRID:SCR_013124) Copy
http://bioinformatics.ust.hk/BOOST.html
Software application (entry from Genetic Analysis Software) for a method for detecting gene-gene interactions. It allows examining all pairwise interactions in genome-wide case-control studies.
Proper citation: BOOST (RRID:SCR_013133) Copy
http://folk.uio.no/thoree/FEST/
An R package for simulations and likelihood calculations of pair-wise family relationships using DNA marker data. (entry from Genetic Analysis Software)
Proper citation: R/FEST (RRID:SCR_013347) Copy
i2b2 (Informatics for Integrating Biology and the Bedside) is an NIH-funded National Center for Biomedical Computing based at Partners HealthCare System. The i2b2 Center is developing a scalable informatics framework that will enable clinical researchers to use existing clinical data for discovery research and, when combined with IRB-approved genomic data, facilitate the design of targeted therapies for individual patients with diseases having genetic origin. For some resources (e.g. software) the use of the resource requires accepting a specific (e.g. OpenSource) license.
Proper citation: Informatics for Integrating Biology and the Bedside (RRID:SCR_013629) Copy
http://www.nitrc.org/projects/nusdast
A repository of schizophrenia neuroimaging data collected from over 450 individuals with schizophrenia, healthy controls and their respective siblings, most with 2-year longitudinal follow-up. The data include neuroimaging data, cognitive data, clinical data, and genetic data.
Proper citation: Northwestern University Schizophrenia Data and Software Tool (NUSDAST) (RRID:SCR_014153) Copy
http://www.depressiontools.org/
Online instrument that estimates whether a biomarker predicting outcome of depression treatment is likely to be clinically significant.
Proper citation: DepressionTools.org Clinical Significance Calculator (RRID:SCR_003873) Copy
http://cbl-gorilla.cs.technion.ac.il/
A tool for identifying and visualizing enriched GO terms in ranked lists of genes. It can be run in one of two modes: * Searching for enriched GO terms that appear densely at the top of a ranked list of genes or * Searching for enriched GO terms in a target list of genes compared to a background list of genes.
Proper citation: GOrilla: Gene Ontology Enrichment Analysis and Visualization Tool (RRID:SCR_006848) Copy
https://www.facebase.org/node/252
THIS RESOURCE IS NO LONGER IN SERVICE,documented on January,18, 2022. FaceBase Biorepository is now collecting biological samples from people with cleft lip/palate and their family members. Information for Prospective Cases: Clefts of the lip and/or palate can be caused by a wide range of genetic, environmental and other factors. The FaceBase Biorepository will serve as a common source of both biological samples and information that can be made available to investigators trying to determine the underlying cause of these common birth defects. Genetic studies, in particular, will benefit from both family history information and having samples from affected individuals as well as their family members. DNA is the information containing molecules found in all the cells of our body and can be easily obtained from material such as blood or saliva samples. As part of the FaceBase Biorepository, we are requesting families to submit biological samples from specific family members as well as information from other family members that might be affected with either the same condition or a similar condition. The medical and family history information that is collected includes other relevant information such as exposure to possible environmental causes during pregnancy. The biorepository is managed by Nichole Nidey, a research study coordinator, and Jeff Murray, a pediatric clinical geneticist and researcher. They are available to speak with family members regarding questions they may have, including providing information about the biorepository and making arrangements for the collection of samples for those who wish to participate. All participation is voluntary. Your name or other personally identifiable information (name, address, etc) will be removed before information is placed in the biorepository. Summary data to show how the database itself has been used overall as well as updates on whether specific findings might have been made using this database will be available on the FaceBase website at www.facebase.org. A newsletter containing this information will also be given to families and referring clinicians so that they may discuss the specifics with the families if there appears to be information that might be relevant in a particular case. Families will also need to sign a consent form that has been approved by the Institutional Review Board at the University of Iowa. Also, any submitted samples or data can also be removed from the database at any time should the family no longer wish to participate. Investigators interested in requesting DNA samples or for more information, please contact cleftresearch (at) uiowa.edu, Nichole Nidey, nichole-nidey (at) uiowa.edu or (319) 353-4365, or Jeff Murray, jeff-murray (at) uiowa.edu.
Proper citation: FaceBase Biorepository (RRID:SCR_006001) Copy
http://chgr.mc.vanderbilt.edu/page/gist
Software package to test if a marker can account in part for the linkage signal in its region. There are two versions of the software: Windows and Linux/Unix.
Proper citation: Genotype-IBD Sharing Test (RRID:SCR_006257) Copy
http://www003.upp.so-net.ne.jp/pub/publications.html#sl
Software application for inkage disequilibrium grouping of single nucleotide polymorphisms (SNPs) reflecting haplotype phylogeny for efficient selection of tag SNPs. (entry from Genetic Analysis Software)
Proper citation: LDGROUP (RRID:SCR_006282) Copy
http://wpicr.wpic.pitt.edu/WPICCompGen/genomic_control/genomic_control.htm
Software application where GC implements the genomic control models. GCF implements the basic Genomic Control approach, but adjusts the p-values for uncertainty in the estimated effect of substructure. This approach is preferable if a large number of tests will be evaluated because it provides a more accurrate assessment of the significance level for small p-values. (entry from Genetic Analysis Software)
Proper citation: GC/GCF (RRID:SCR_009075) Copy
http://www.homepages.ed.ac.uk/pmckeigu/pooling/poolscore.htm
Software program for analysis of case-control genetic association studies using allele frequency measurements on DNA pools (entry from Genetic Analysis Software)
Proper citation: POOLSCORE (RRID:SCR_007514) Copy
http://wpicr.wpic.pitt.edu/WPICCompGen/newcovibd/covibd.htm
Software application that refines linkage analysis of affected sibpairs by considering attributes or environmental exposures thought to affect disease liability. This refinement utilizes a mixture model in which a disease mutation segregates in only a fraction of the sibships, with the rest of the sibships unlinked. Covariate information is used to predict membership within the two groups corresponding to the linked and unlinked sibships. The pre-clustering model uses covariate information to first form two probabilistic clusters and then tests for excess IBD-sharing in the clusters. The Cov-IBD model determines probabilistic group membership by joint consideration of covariate and IBD values. (entry from Genetic Analysis Software)
Proper citation: COVIBD (RRID:SCR_009155) Copy
http://www.people.fas.harvard.edu/~junliu/em/em.htm
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. A haplotype inference program.
Proper citation: EM-DECODER (RRID:SCR_000023) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.