Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_006489

    This resource has 1+ mentions.

http://www.informatics.jax.org/searches/GO_form.shtml

With the MGI GO Browser, you can search for a GO term and view all mouse genes annotated to the term or any subterms. You can also browse the ontologies to view relationships between terms, term definitions, as well as the number of mouse genes annotated to a given term and its subterms. The MGI GO browser directly accesses the GO data in the MGI database, which is updated nightly. Platform: Online tool

Proper citation: MGI GO Browser (RRID:SCR_006489) Copy   


http://www.fda.gov/ScienceResearch/BioinformaticsTools/Arraytrack/default.htm

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 23,2023. Software tool developed for ArrayTrack that takes a list of genes and identifies terms in Gene Ontology associated with those genes. GOFFA provides tools to view/access the following: GO term hierarchy, full listing of GO terms annotated with the genes associated with a given term, Fisher's exact test p-value providing the probability of identifying that many genes for a given term by chance alone, and relative enrichment factor (E-value) giving the enrichment of a GO term for genes in the submitted list relative to the frequency of genes assigned to that term from the full set of GOFFA annotated genes for a particular species.

Proper citation: Gene Ontology For Functional Analysis (GOFFA) (RRID:SCR_006484) Copy   


  • RRID:SCR_006350

    This resource has 1000+ mentions.

http://kobas.cbi.pku.edu.cn/

Web server to identify statistically enriched pathways, diseases, and GO terms for a set of genes or proteins, using pathway, disease, and GO knowledge from multiple famous databases. It allows for both ID mapping and cross-species sequence similarity mapping. It then performs statistical tests to identify statistically significantly enriched pathways and diseases. KOBAS 2.0 incorporates knowledge across 1327 species from 5 pathway databases (KEGG PATHWAY, PID, BioCyc, Reactome and Panther) and 5 human disease databases (OMIM, KEGG DISEASE, FunDO, GAD and NHGRI GWAS Catalog). A standalone command line version is also available, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: KOBAS (RRID:SCR_006350) Copy   


http://www.informatics.jax.org/mgihome/GO/project.shtml

This resource is part of the Gene Ontology Consortium which seeks to provide controlled vocabularies for the description of the molecular function, biological process, and cellular component of gene products. These terms are to be used as attributes of gene products by collaborating databases, facilitating uniform queries across them. GO team members at MGI participate in ontology development, outreach, and functional curation of mouse gene products. The GO vocabularies have a hierarchical structure that permits a range of detail from high-level, broadly descriptive terms to very low level, highly specific terms. This broad range is useful both in annotating genes and in searching for gene information using these terms as search criteria. GO terms are defined, allowing all databases to use the terms consistently and properly. GO annotations in the databases additionally include the publication reference which allowed the association to be made and an evidence statement citing how the association was determined.

Proper citation: Mouse Genome Informatics: The Gene Ontology Project (RRID:SCR_006447) Copy   


  • RRID:SCR_006596

    This resource has 10+ mentions.

http://www.ebi.ac.uk/ontology-lookup/

Interactive and programmatic interfaces to query, browse and navigate an increasing number of biomedical ontologies and controlled vocabularies. It provides a web service interface to query multiple ontologies from a single location with a unified output format. It can integrate any ontology available in the Open Biomedical Ontology (OBO) format. The database can be queried to obtain information on a single term or to browse a complete ontology using AJAX. Auto-completion provides a user-friendly search mechanism. An AJAX-based ontology viewer is available to browse a complete ontology or subsets of it. A weekly MySQL database export file can be downloaded from the EBI public FTP directory.

Proper citation: Ontology Lookup Service (RRID:SCR_006596) Copy   


  • RRID:SCR_000496

http://scicrunch.org/Aging

Portal devoted to aging relevant scientific data and resources.

Proper citation: Aging Portal (RRID:SCR_000496) Copy   


  • RRID:SCR_000653

    This resource has 1+ mentions.

http://gowiki.tamu.edu/wiki/

A wiki where users of the Gene Ontology can contribute and view notes about how specific GO terms are used. GONUTS can also be used as a GO term browser, or to search for GO annotations of specific genes from included organisms. The rationale for this wiki is based on helping new users of the gene ontology understand and use it. The GONUTS wiki is not an official product of the the Gene Ontology consortium. The GO consortium has a public wiki at their website, http://wiki.geneontology.org/. Maintaining the ontology involves many decisions to carefully choose terms and relationships. These decisions are currently made at GO meetings and via online discussion using the GO mailing lists and the Sourceforge curator request tracker. However, it is difficult for someone starting to use GO to understand these decisions. Some insight can be obtained by mining the tracker, the listservs and the minutes of GO meetings, but this is difficult, as these discussions are often dispersed and sometimes don't contain the GO accessions in the relevant messages. Wikis provide a way to create collaboratively written documentation for each GO term to explain how it should be used, how to satisfy the true path requirement, and whether an annotation should be placed at a different level. In addition, the wiki pages provide a discussion space, where users can post questions and discuss possible changes to the ontology. GONUTS is currently set up so anyone can view or search, but only registered users can edit or add pages. Currently registered users can create new users, and we are working to add at least one registered user for each participating database (So far we have registered users at EcoliHub, EcoCyc, GOA, BeeBase, SGD, dictyBase, FlyBase, WormBase, TAIR, Rat Genome Database, ZFIN, MGI, UCL and AgBase...

Proper citation: GONUTS (RRID:SCR_000653) Copy   


http://www.patika.org/

The human pathway database which contains different biological entities and reactions and software tools for analysis. PATIKA Database integrates data from several sources, including Entrez Gene, UniProt, PubChem, GO, IntAct, HPRD, and Reactome. Users can query and access this data using the PATIKAweb query interface. Users can also save their results in XML or export to common picture formats. The BioPAX and SBML exporters can be used as part of this Web service.

Proper citation: Pathway Analysis Tool for Integration and Knowledge Acquisition (RRID:SCR_002100) Copy   


  • RRID:SCR_006201

    This resource has 1+ mentions.

http://code.google.com/p/behavior-ontology

An ontology consisting of two main components, an ontology of behavioral processes and an ontology of behavioral phenotypes. The behavioral process branch of NBO contains a classification of behavior processes complementing and extending the GO process ontology. The behavior phenotype branch of NBO consists of a classification of both normal and abnormal behavioral characteristics of organisms. The prime application of NBO is to provide the vocabulary that is required to integrate behavior observations within and across species. It is currently being applied by several model organism communities as well as in the description of human behavior-related disease phenotypes. The main ontology is available in both the OBO Flatfile Format and the Web Ontology Language (OWL).

Proper citation: Neurobehavior Ontology (RRID:SCR_006201) Copy   


  • RRID:SCR_004834

    This resource has 10+ mentions.

https://neuinfo.org/mynif/search.php?list=cover&q=*

Service that partners with the community to expose and simultaneously drill down into individual databases and data sets and return relevant content. This type of content, part of the so called hidden Web, is typically not indexed by existing web search engines. Every record links back to the originating site. In order for NIF to directly query these independently maintained databases and datasets, database providers must register their database or dataset with the NIF Data Federation and specify permissions. Databases are concept mapped for ease of sharing and to allow better understanding of the results. Learn more about registering your resource, http://neuinfo.org/nif_components/disco/interoperation.shtm Search results are displayed under the Data Federation tab and are categorized by data type and nervous system level. In this way, users can easily step through the content of multiple resources, all from the same interface. Each federated resource individually displays their query results with links back to the relevant datasets within the host resource. This allows users to take advantage of additional views on the data and tools that are available through the host database. The NIF site provides tutorials for each resource, indicated by the Professor Icon professor icon showing users how to navigate the results page once directed there through the NIF. Additionally, query results may be exported as an Excel document. Note: NIF is not responsible for the availability or content of these external sites, nor does NIF endorse, warrant or guarantee the products, services or information described or offered at these external sites. Integrated Databases: Theses virtual databases created by NIF and other partners combine related data indexed from multiple databases and combine them into one view for easier browsing. * Integrated Animal View * Integrated Brain Gene Expression View * Integrated Disease View * Integrated Nervous System Connectivity View * Integrated Podcasts View * Integrated Software View * Integrated Video View * Integrated Jobs * Integrated Blogs For a listing of the Federated Databases see, http://neuinfo.org/mynif/databaseList.php or refer to the Resources Listed by NIF Data Federation table below.

Proper citation: NIF Data Federation (RRID:SCR_004834) Copy   


  • RRID:SCR_002477

    This resource has 10+ mentions.

http://www.evidenceontology.org

A controlled vocabulary that describes types of scientific evidence within the realm of biological research that can arise from laboratory experiments, computational methods, manual literature curation, and other means. Researchers can use these types of evidence to support assertions about research subjects that result from scientific research, such as scientific conclusions, gene annotations, or other statements of fact. ECO comprises two high-level classes, evidence and assertion method, where evidence is defined as a type of information that is used to support an assertion, and assertion method is defined as a means by which a statement is made about an entity. Together evidence and assertion method can be combined to describe both the support for an assertion and whether that assertion was made by a human being or a computer. However, ECO can not be used to make the assertion itself; for that, one would use another ontology, free text description, or other means. ECO was originally created around the year 2000 to support gene product annotation by the Gene Ontology. Today ECO is used by many groups concerned with provenance in scientific research. ECO is used in AmiGO 2

Proper citation: ECO (RRID:SCR_002477) Copy   


  • RRID:SCR_005806

    This resource has 10+ mentions.

http://go.princeton.edu/cgi-bin/GOTermMapper

The Generic GO Term Mapper finds the GO terms shared among a list of genes from your organism of choice within a slim ontology, allowing them to be binned into broader categories. The user may optionally provide a custom gene association file or slim ontology, or a custom list of slim terms. The implementation of this Generic GO Term Mapper uses map2slim.pl script written by Chris Mungall at Berkeley Drosophila Genome Project, and some of the modules included in the GO-TermFinder distribution written by Gavin Sherlock and Shuai Weng at Stanford University, made publicly available through the GMOD project. GO Term Mapper serves a different function than the GO Term Finder. GO Term Mapper simply bins the submitted gene list to a static set of ancestor GO terms. In contrast, GO Term Finder finds the GO terms significantly enriched in a submitted list of genes. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Generic GO Term Mapper (RRID:SCR_005806) Copy   


  • RRID:SCR_005799

    This resource has 50+ mentions.

http://smd.stanford.edu/cgi-bin/source/sourceSearch

SOURCE compiles information from several publicly accessible databases, including UniGene, dbEST, UniProt Knowledgebase, GeneMap99, RHdb, GeneCards and LocusLink. GO terms associated with LocusLink entries appear in SOURCE. The mission of SOURCE is to provide a unique scientific resource that pools publicly available data commonly sought after for any clone, GenBank accession number, or gene. SOURCE is specifically designed to facilitate the analysis of large sets of data that biologists can now produce using genome-scale experimental approaches Platform: Online tool

Proper citation: SOURCE (RRID:SCR_005799) Copy   


  • RRID:SCR_005679

    This resource has 1+ mentions.

http://gdm.fmrp.usp.br/tools_bit.php

THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 29, 2012. Gene Class Expression allows functional annotation of SAGE data using the Gene Ontology database. This tool performs searches in the GO database for each SAGE tag, making associations in the selected GO category for a level selected in the hierarchy. This system provides user-friendly data navigation and visualization for mapping SAGE data onto the gene ontology structure. This tool also provides graphical visualization of the percentage of SAGE tags in each GO category, along with confidence intervals and hypothesis testing. Platform: Online tool

Proper citation: Gene Class Expression (RRID:SCR_005679) Copy   


  • RRID:SCR_005669

    This resource has 1+ mentions.

http://vortex.cs.wayne.edu/projects.htm#Onto-Compare

Microarrays are at the center of a revolution in biotechnology, allowing researchers to screen tens of thousands of genes simultaneously. Typically, they have been used in exploratory research to help formulate hypotheses. In most cases, this phase is followed by a more focused, hypothesis driven stage in which certain specific biological processes and pathways are thought to be involved. Since a single biological process can still involve hundreds of genes, microarrays are still the preferred approach as proven by the availability of focused arrays from several manufacturers. Since focused arrays from different manufacturers use different sets of genes, each array will represent any given regulatory pathway to a different extent. We argue that a functional analysis of the arrays available should be the most important criterion used in the array selection. We developed Onto-Compare as a database that can provide this functionality, based on the GO nomenclature. Compare commercially available microarrays based on GO. User account required. Platform: Online tool

Proper citation: Onto-Compare (RRID:SCR_005669) Copy   


  • RRID:SCR_006141

    This resource has 10+ mentions.

http://www.pathbase.net/

Database of histopathology photomicrographs and macroscopic images derived from mutant or genetically manipulated mice. The database currently holds more than 1000 images of lesions from mutant mice and their inbred backgrounds and further images are being added continuously. Images can be retrieved by searching for specific lesions or class of lesion, by genetic locus, or by a wide set of parameters shown on the Advanced Search Interface. Its two key aims are: * To provide a searchable database of histopathology images derived from experimental manipulation of the mouse genome or experiments conducted on genetically manipulated mice. * A reference / didactic resource covering all aspects of mouse pathology Lesions are described according to the Pathbase pathology ontology developed by the Pathbase European Consortium, and are available at the site or on the Gene Ontology Consortium site - OBO. As this is a community resource, they encourage everyone to upload their own images, contribute comments to images and send them their feedback. Please feel free to use any of the SOAP/WSDL web services. (under development)

Proper citation: Pathbase (RRID:SCR_006141) Copy   


https://omictools.com/l2l-tool

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 26, 2019.

Database of published microarray gene expression data, and a software tool for comparing that published data to a user''''s own microarray results. It is very simple to use - all you need is a web browser and a list of the probes that went up or down in your experiment. If you find L2L useful please consider contributing your published data to the L2L Microarray Database in the form of list files. L2L finds true biological patterns in gene expression data by systematically comparing your own list of genes to lists of genes that have been experimentally determined to be co-expressed in response to a particular stimulus - in other words, published lists of microarray results. The patterns it finds can point to the underlying disease process or affected molecular function that actually generated the observed changed in gene expression. Its insights are far more systematic than critical gene analyses, and more biologically relevant than pure Gene Ontology-based analyses. The publications included in the L2L MDB initially reflected topics thought to be related to Cockayne syndrome: aging, cancer, and DNA damage. Since then, the scope of the publications included has expanded considerably, to include chromatin structure, immune and inflammatory mediators, the hypoxic response, adipogenesis, growth factors, hormones, cell cycle regulators, and others. Despite the parochial origins of the database, the wide range of topics covered will make L2L of general interest to any investigator using microarrays to study human biology. In addition to the L2L Microarray Database, L2L contains three sets of lists derived from Gene Ontology categories: Biological Process, Cellular Component, and Molecular Function. As with the L2L MDB, each GO sub-category is represented by a text file that contains annotation information and a list of the HUGO symbols of the genes assigned to that sub-category or any of its descendants. You don''''t need to download L2L to use it to analyze your microarray data. There is an easy-to-use web-based analysis tool, and you have the option of downloading your results so you can view them at any time on your own computer, using any web browser. However, if you prefer, the entire L2L project, and all of its components, can be downloaded from the download page. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: L2L Microarray Analysis Tool (RRID:SCR_013440) Copy   


  • RRID:SCR_013394

http://www.nabc.go.kr/sgd/

Database for ESTs (Expressed Sequence Tags), consensus sequences, bacterial artificial chromosome (BAC) clones, BES (BAC End Sequences). They have generated 69,545 ESTs from 6 full-length cDNA libraries (Porcine Abdominal Fat, Porcine Fat Cell, Porcine Loin Muscle, Liver and Pituitary gland). They have also identified a total of 182 BAC contigs from chromosome 6. It is very valuable resources to study porcine quantitative trait loci (QTL) mapping and genome study. Users can explore genomic alignment of various data types, including expressed sequence tags (ESTs), consensus sequences, singletons, QTL, Marker, UniGene and BAC clones by several options. To estimate the genomic location of sequence dataset, their data aligned BES (BAC End Sequences) instead of genomic sequence because Pig Genome has low-coverage sequencing data. Sus scrofa Genome Database mainly provide comparative map of four species (pig, cattle, dog and mouse) in chromosome 6.

Proper citation: PiGenome (RRID:SCR_013394) Copy   


http://bis.zju.edu.cn/pnatdb/

Natural Antisense Transcripts (NATs), a kind of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and/or pathological processes. PlantNATsDB (Plant Natural Antisense Transcripts DataBase) is a platform for annotating and discovering NATs by integrating various data sources involving approximately 2 million NAT pairs in 69 plant species. PlantNATsDB also provides an integrative, interactive and information-rich web graphical interface to display multidimensional data, and facilitate plant research community and the discovery of functional NATs. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. A ''''Gene Set Analysis'''' module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs.

Proper citation: PlantNATsDB - Plant Natural Antisense Transcripts DataBase (RRID:SCR_013278) Copy   


  • RRID:SCR_008870

    This resource has 100+ mentions.

http://go.princeton.edu/cgi-bin/GOTermFinder

The Generic GO Term Finder finds the significant GO terms shared among a list of genes from an organism, displaying the results in a table and as a graph (showing the terms and their ancestry). The user may optionally provide background information or a custom gene association file or filter evidence codes. This tool is capable of batch processing multiple queries at once. GO::TermFinder comprises a set of object-oriented Perl modules GO::TermFinder can be used on any system on which Perl can be run, either as a command line application, in single or batch mode, or as a web-based CGI script. This implementation, developed at the Lewis-Sigler Institute at Princeton, depends on the GO-TermFinder software written by Gavin Sherlock and Shuai Weng at Stanford University and the GO:View module written by Shuai Weng. It is made publicly available through the GMOD project. The full source code and documentation for GO:TermFinder are freely available from http://search.cpan.org/dist/GO-TermFinder/. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Generic GO Term Finder (RRID:SCR_008870) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X