Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_005821

    This resource has 1+ mentions.

http://www.ebi.ac.uk/expressionprofiler/

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. The EP:GO browser is built into EBI's Expression Profiler, a set of tools for clustering, analysis and visualization of gene expression and other genomic data. With it, you can search for GO terms and identify gene associations for a node, with or without associated subnodes, for the organism of your choice.

Proper citation: Expression Profiler (RRID:SCR_005821) Copy   


  • RRID:SCR_005822

    This resource has 1+ mentions.

http://www.snubi.org/software/GOChase/

GOChase is a set of web-based utilities to detect and correct the errors in GO-based annotations. # GOChase-History resolves the whole modification history of GO IDs. # GOChase-Correct highlights merged GO IDs and redirects to the correct primary term into which the secondary ID was merged. For obsolete GO terms, the nearest non-discarded parent term is recommended by GOChase. This function may be used by GO browsers such as AmiGO and QuickGO to fix broken hyperlinks. # A whole database (such as LocusLink) as a flat file can be loaded into GOChase, reporting the annotation errors and GOChase corrections. # When one inputs a GO ID, GOChase will resolve all gene products annotated with the GO ID across all the major databases. Platform: Online tool

Proper citation: GOChase (RRID:SCR_005822) Copy   


http://www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl

The GO Slim Mapper (aka GO Term Mapper) maps the specific, granular GO terms used to annotate a list of budding yeast gene products to corresponding more general parent GO slim terms. Uses the SGD GO Slim sets. Three GO Slim sets are available at SGD: * Macromolecular complex terms: protein complex terms from the Cellular Component ontology * Yeast GO-Slim: GO terms that represent the major Biological Processes, Molecular Functions, and Cellular Components in S. cerevisiae * Generic GO-Slim: broad, high level GO terms from the Biological Process and Cellular Component ontologies selected and maintained by the Gene Ontology Consortium (GOC) Platform: Online tool

Proper citation: SGD Gene Ontology Slim Mapper (RRID:SCR_005784) Copy   


  • RRID:SCR_005813

    This resource has 1+ mentions.

http://lussierlab.org/GO-Module/GOModule.cgi

GO-Module provides an interface to reduce the dimensionality of GO enrichment results and produce interpretable biomodules of significant GO terms organized by hierarchical knowledge that contain only true positive results. Users can download a text file of GO terms annotated with their significance and identified biomodules, a network visualization of resultant GO IDs or terms in PDF format, and view results in an online table. Platform: Online tool

Proper citation: GO-Module (RRID:SCR_005813) Copy   


  • RRID:SCR_005684

    This resource has 10+ mentions.

http://www.agbase.msstate.edu/cgi-bin/tools/GOanna.cgi

GOanna is used to find annotations for proteins using a similarity search. The input can be a list of IDs or it can be a list of sequences in FASTA format. GOanna will retrieve the sequences if necessary and conduct the specified BLAST search against a user-specified database of GO annotated proteins. The resulting file contains GO annotations of the top BLAST hits. The sequence alignments are also provided so the user can use these to access the quality of the match. Platform: Online tool

Proper citation: GOanna (RRID:SCR_005684) Copy   


http://xldb.fc.ul.pt/biotools/rebil/ssm/

FuSSiMeG is being discontinued, may not be working properly. Please use our new tool ProteinOn. Functional Semantic Similarity Measure between Gene Products (FuSSiMeG) provides a functional similarity measure between two proteins using the semantic similarity between the GO terms annotated with the proteins. Platform: Online tool

Proper citation: FuSSiMeG: Functional Semantic Similarity Measure between Gene-Products (RRID:SCR_005738) Copy   


http://omicslab.genetics.ac.cn/GOEAST/

Gene Ontology Enrichment Analysis Software Toolkit (GOEAST) is a web based software toolkit providing easy to use, visualizable, comprehensive and unbiased Gene Ontology (GO) analysis for high-throughput experimental results, especially for results from microarray hybridization experiments. The main function of GOEAST is to identify significantly enriched GO terms among give lists of genes using accurate statistical methods. Compared with available GO analysis tools, GOEAST has the following unique features: * GOEAST supports analysis for data from various resources, such as expression data obtained using Affymetrix, illumina, Agilent or customized microarray platforms. GOEAST also supports non-microarray based experimental data. The web-based feature makes GOEAST very user friendly; users only have to provide a list of genes in correct formats. * GOEAST provides visualizable analysis results, by generating graphs exhibiting enriched GO terms as well as their relationships in the whole GO hierarchy. * Note that GOEAST generates separate graph for each of the three GO categories, namely biological process, molecular function and cellular component. * GOEAST allows comparison of results from multiple experiments (see Multi-GOEAST tool). The displayed color of each GO term node in graphs generated by Multi-GOEAST is the combination of different colors used in individual GOEAST analysis. Platform: Online tool

Proper citation: GOEAST - Gene Ontology Enrichment Analysis Software Toolkit (RRID:SCR_006580) Copy   


http://cbl-gorilla.cs.technion.ac.il/

A tool for identifying and visualizing enriched GO terms in ranked lists of genes. It can be run in one of two modes: * Searching for enriched GO terms that appear densely at the top of a ranked list of genes or * Searching for enriched GO terms in a target list of genes compared to a background list of genes.

Proper citation: GOrilla: Gene Ontology Enrichment Analysis and Visualization Tool (RRID:SCR_006848) Copy   


  • RRID:SCR_006385

    This resource has 1+ mentions.

http://gtlinker.cnb.csic.es/

Web application that filters and links enriched output data identifying sets of associated genes and terms, producing metagroups of coherent biological significance. The method uses fuzzy reciprocal linkage between genes and terms to unravel their functional convergence and associations. It can also be accessed through its web service.

Proper citation: GeneTerm Linker (RRID:SCR_006385) Copy   


  • RRID:SCR_006250

    This resource has 100+ mentions.

http://genetrail.bioinf.uni-sb.de/

A web-based application that analyzes gene sets for statistically significant accumulations of genes that belong to some functional category. Considered category types are: KEGG Pathways, TRANSPATH Pathways, TRANSFAC Transcription Factor, GeneOntology Categories, Genomic Localization, Protein-Protein Interactions, Coiled-coil domains, Granzyme-B clevage sites, and ELR/RGD motifs. The web server provides two statistical approaches, "Over-Representation Analysis" (ORA) comparing a reference set of genes to a test set, and "Gene Set Enrichment Analysis" (GSEA) scoring sorted lists of genes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GeneTrail (RRID:SCR_006250) Copy   


  • RRID:SCR_006406

    This resource has 500+ mentions.

http://bioinformatics.intec.ugent.be/magic/

Web based interface for exploring and analyzing a comprehensive maize-specific cross-platform expression compendium. This compendium was constructed by collecting, homogenizing and formally annotating publicly available microarrays from Gene Expression Omnibus (GEO), and ArrayExpress.

Proper citation: Magic (RRID:SCR_006406) Copy   


  • RRID:SCR_008535

    This resource has 100+ mentions.

http://gostat.wehi.edu.au

GOstat is a tool that allows you to find statistically overrepresented Gene Ontologies within a group of genes. The Gene-Ontology database (GO: http://www.geneontology.org) provides a useful tool to annotate and analyze the function of large numbers of genes. Modern experimental techniques, as e.g. DNA microarrays, often result in long lists of genes. To learn about the biology in this kind of data it is desirable to find functional annotation or Gene-Ontology groups which are highly represented in the data. This program (GOstat) should help in the analysis of such lists and will provide statistics about the GO terms contained in the data and sort the GO annotations giving the most representative GO terms first. Run GOstat: * Go to search form - Computes GO statistics of a list of genes selected from a microarray. * GOstat Display - You can store results from a previously run and view them here, either by uploading them as a file or putting them on a selected URL. * Upload Custom GO Annotations - This allows you to upload your own GO annotation database and use it with GOstat. Variants of GOstat: * Rank GOstat - Takes input from all genes on microarray instead of using a fixed cutoff and uses ranks using a Wilcoxon test or either ranks or pvalues to score GOs using Kolmogorov-Smirnov statistics. * Gene Abundance GOstats - Takes input from all genes on microarray and sums up the gene abundances for each GO to compute statistics. * Two list GOstat - Compares GO statistics in two independent lists of genes, not necessarily one of them being the complete list the other list is sampled from. Platform: Online tool, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GOstat (RRID:SCR_008535) Copy   


  • RRID:SCR_012035

http://gsgator.ewha.ac.kr/

A web-based platform for functional interpretation of gene sets with features such as cross-species Gene Set Analysis (GSA), Flexible and Interactive GSA, simultaneous GSA for multiple gene set, and and a fully integrated network viewer for both visualizing GSA results and molecular networks.

Proper citation: gsGator (RRID:SCR_012035) Copy   


  • RRID:SCR_002360

    This resource has 100+ mentions.

http://discover.nci.nih.gov/gominer/

GoMiner is a tool for biological interpretation of "omic" data including data from gene expression microarrays. Omic experiments often generate lists of dozens or hundreds of genes that differ in expression between samples, raising the question, What does it all mean biologically? To answer this question, GoMiner leverages the Gene Ontology (GO) to identify the biological processes, functions and components represented in these lists. Instead of analyzing microarray results with a gene-by-gene approach, GoMiner classifies the genes into biologically coherent categories and assesses these categories. The insights gained through GoMiner can generate hypotheses to guide additional research. GoMiner displays the genes within the framework of the Gene Ontology hierarchy in two ways: * In the form of a tree, similar to that in AmiGO * In the form of a "Directed Acyclic Graph" (DAG) The program also provides: * Quantitative and statistical analysis * Seamless integration with important public databases GoMiner uses the databases provided by the GO Consortium. These databases combine information from a number of different consortium participants, include information from many different organisms and data sources, and are referenced using a variety of different gene product identification approaches.

Proper citation: GoMiner (RRID:SCR_002360) Copy   


http://bioinformatics.biol.rug.nl/standalone/fiva/

Functional Information Viewer and Analyzer (FIVA) aids researchers in the prokaryotic community to quickly identify relevant biological processes following transcriptome analysis. Our software is able to assist in functional profiling of large sets of genes and generates a comprehensive overview of affected biological processes. Currently, seven different modules containing functional information have been implemented: (i) gene regulatory interactions, (ii) cluster of orthologous groups (COG) of proteins, (iii) gene ontologies (GO), (iv) metabolic pathways (v) Swiss Prot keywords, (vi) InterPro domains - and (vii) generic functional categories. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: FIVA - Functional Information Viewer and Analyzer (RRID:SCR_005776) Copy   


http://ftp://ftp.geneontology.org/pub/go/www/GO.tools_by_type.term_enrichment.shtml#gobean

GoBean is a Java application for gene ontology enrichment analysis. It utilizes the NetBeans platform framework. Features * Graphical comparison of multiple enrichment analysis results * Versatile filter facility for focused analysis of enrichment results * Effective exploitation of the graphical/hierarchical structure of GO * Evidence code based association filtering * Supports local data files such as the ontology obo file and gene association files * Supports late enrichment methods and multiple testing corrections * Built-in ID conversion for common species using Ensembl biomart service Platform: Windows compatible, Mac OS X compatible, Linux compatible

Proper citation: GoBean - a Java application for Gene Ontology enrichment analysis (RRID:SCR_005808) Copy   


  • RRID:SCR_007075

http://www.seqexpress.com/

A comprehensive analysis and visualization software package for gene expression experiments that provides: a number of clustering and analysis techniques; integrated gene expression and analysis result visualizations, integration with the Gene Expression Omnibus; and an optional data sharing architecture. GO is used to assign functional enrichment scores to clusters, using a combination of specially developed techniques and general statistical methods. These results can be explored using the in built ontology browsing tool or through the generated web pages. SeqExpress also supports numerous data transformation, projection, visualization, file export/import, searching, integration (with R), and clustering options.

Proper citation: SeqExpress (RRID:SCR_007075) Copy   


  • RRID:SCR_006819

    This resource has 1+ mentions.

http://owlsim.org

Software package that provides the ability to do a number of standard semantic similarity methods and includes novel methods for combining these with dynamic selection of anonymous grouping classes. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: OwlSim (RRID:SCR_006819) Copy   


http://genome.crg.es/GOToolBox/

The GOToolBox web server provides a series of programs allowing the functional investigation of groups of genes, based on the Gene Ontology resource. The web version of the GOToolBox is free for non-commercial users only. Users from commercial companies are allowed to use the site during a reasonable testing period. For a regular use of the web version, a license fee should be paid. We have developed methods and tools based on the Gene Ontology (GO) resource allowing the identification of statistically over- or under-represented terms in a gene dataset; the clustering of functionally related genes within a set; and the retrieval of genes sharing annotations with a query gene. GO annotations can also be constrained to a slim hierarchy or a given level of the ontology. The source codes are available upon request, and distributed under the GPL license. Platform: Online tool

Proper citation: GOToolBox Functional Investigation of Gene Datasets (RRID:SCR_003192) Copy   


http://compbio.dfci.harvard.edu/amp/

THIS RESOURCE IS NO LONGER IN SERVICE, documented November 4, 2015. Web application based on the TM4 Microarray Software Suite to provide a means of normalization and analysis of microarray data. Users can upload data in the form of Affymetrix CEL files, and define an analysis pipeline by selecting several intuitive options. It performs data normalization (eg RMA), basic statistical analysis (eg t-test, ANOVA), and analysis of annotation using gene classification (eg Gene Ontology term assignment). The analysis are performed without user intervention and the results are presented in a web-based summary that allows data to be downloaded in a variety of formats compatible with further directed analysis.

Proper citation: Automated Microarray Pipeline (RRID:SCR_001219) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X