Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.nitrc.org/projects/whs-sd-atlas/
Open access volumetric atlas of anatomical delineations of rat brain based on structural contrast in isotropic magnetic resonance and diffusion tensor images acquired ex vivo from 80 day old male Sprague Dawley rat at Duke Center for In Vivo Microscopy. Spatial reference is provided by Waxholm Space coordinate system. Location of bregma and lambda are identified as anchors towards stereotaxic space. Application areas include localization of signal in non structural images. Atlas, MRI and DTI volumes, and diffusion tensor data are shared in NIfTI format.
Proper citation: Waxholm Space Atlas of the Sprague Dawley Rat Brain (RRID:SCR_017124) Copy
Genome wide database of gene expression in mouse brain. Genome-wide atlas of gene expression in the adult mouse brain.
Proper citation: ABA Mouse Brain: Atlas (RRID:SCR_017479) Copy
An Australian brain bank which aims to collect, store, characterize and provide tissue to national and international researchers studying disorders of the brain such as alcohol-related brain damage and mental illness, like schizophrenia. The program encourages those who are medically healthy to donate.
Proper citation: Using our Brains Tissue Donor Program (RRID:SCR_000705) Copy
https://neuropsychological-assessment-tests.com/sanzen-tower-london-test
CATs Tower of London test is a free, computer-based software test originally developed by Shallice (1982) to investigate problem solving in subjects with damage to the frontal lobes. The CATs Tower of London Test comes with one preprogrammed test along with extensive normative data for that test. You can also create a test using your design. Briefly, subjects are required to move colored beads from a window on the left (working area) until they achieve the arrangement in the window on the right (goal position). Subjects are instructed to try to achieve the goal arrangement in as few moves as possible. The software contains a Tower of London test. The test contains trials with 3 beads and 3 pegs, 4 beads and 4 pegs, and 5 beads and 5 pegs. You can use the Setup screen to create a test using your design. A test can contain 3, 4, and 5 bead problems with varying number of moves required for the optimal solution. In Shallice's initial investigation using the Tower of London, patients with damage to the left anterior frontal lobe demonstrated impaired planning (i.e., greater number of moves required for solution). Patients with damage to the right anterior, and left or right posterior areas of the frontal lobes were not impaired. Thus, results from this initial study provided support for the view that the left anterior frontal lobe area is involved in the planning required for solving the Tower of London test. Recent studies using neuroimaging techniques support this notion. Studies using regional cerebral blood flow (rCBF) imaging indicate an involvement of the left frontal lobes in the planning required for successfully completing the Tower of London puzzle. Studies of patients with damage to the frontal lobes indicate less cortical specificity, but are consistent with the view that the frontal lobes are involved in the planning required for solving this puzzle.
Proper citation: Colorado Assessment Tests - Tower of London (RRID:SCR_003507) Copy
http://www.bcgsc.ca/project/pleiades-promoter-project
Project to generate human DNA promoters of less than 4 kb (MiniPromoters) to drive gene expression in defined brain regions of therapeutic interest for diseases such as Alzheimer, Parkinson, Huntington, Amyotrophic Lateral Sclerosis, Multiple Sclerosis, Spinocerebellar Ataxia, Depression, Autism, and Cancer. Project develops and shares tools like human MiniPromoters that drive region- and cell-specific gene expression in the mouse brain, expression constructs, mouse embryonic stem cell lines, and knock-in mice all of which carry brain-specific MiniPromoters. Project is daughter of Genome Canada Project, Atlas of Gene Expression in Mouse Development, within which mouse brain gene expression data have already been gathered. Project team has collaborated with International BioPharma Solutions Ltd., management and communications consulting company specializing in product development and commercialization advice. Project will explore challenging interface between science and journalism with focus on genomics and gene therapy.
Proper citation: Pleiades Promoter Project: Genomic Resources Advancing Therapies for Brain Disorders (RRID:SCR_003282) Copy
http://brainevolutionnews.blogspot.com/
Brain Evolution in the News pulls in blogs from a variety of resources on topic.
Proper citation: Brain Evolution in the News (RRID:SCR_000592) Copy
http://www.eideneurolearningblog.blogspot.com/
Weekly articles related to brain-based learning and learning styles, problem-solving and creativity, kids, families, and parenting, gifted and visual learners, dyslexia, attention deficit disorders, autism, and more.
Proper citation: Eide Neurolearning Blog (RRID:SCR_000680) Copy
http://www.mknt.hu/sites/default/files/NEPSYBANK_0.doc
The Hungarian Society of Clinical Neurgenetics established a nationwide collaboration for prospective collection of human biological materials and databases from patient with neurological and psychiatric diseases. The basic triangle of the NEPSYBANK is the sample, the information and the study management. The present participants of the NEPSYBANK are the Department of Neurology and Psychiatry of the four Medical Universities (in Budapest, Debrecen, Pecs, Szeged) and the National Institute of Psychiatry and Neurology in Budapest. The NEPSYBANK is a disease based biobank collecting both phenotypical and environmental data and biological materials such as DNA/RNA, whole blood, plasma, cerebral spinal fluid, muscle / nerve / skin biopsy, brain, and fibroblast. The target of the diseases is presently (Phase I): stroke syndromes, dementias, movement disorders, motoneuron diseases, epilepsy, multiple sclerosis, schizophrenia, alcohol addiction. In the near future (Phase II.) it is planned to enlarge the scale with headaches, disorders of the peripheral nerves, disorders of neuromuscular transmission, disorders of skeletal muscle, depression, anxiety. DNA/RNA is usually extracted from whole blood, but occasionally different tissues such as muscle, brain etc. can be used as well. The extracting procedures differ among the institutes, but in all cases the concentration and the quality of the DNA/RNA must be registered in the database. Participating institutional biobanks have committed themselves to follow common quality standards, which provide access to samples after prioritization on scientific grounds only. In every case the following data are registered. 1. General data: main bank categories, age, sex, ethnicity, body height, body weight, economic stats, education, type of place of living, marital status, birth complications, alcohol, drugs, smoking. 2. Sample properties (sample ID, type of sample, date of extraction, concentration, and level of purity). General patient data as blood pressure, heart rate, internal medical status, ECG, additional diseases. Disease specific question e.g. in schizophrenia the diagnosis after DSMIV and ICD 10, detailed diagnostic questions after both classification, detailed psychiatric and neurological status, laboratory findings, rating scales, data of neuroimaging, genetic tests, applied medication (with generic name, dose, duration), adverse drug effects and other treatments. The Biobank Information Management System (BIMS) is responsible for linkage of databases containing information on the individual sample donors. If you want to have samples from the NEPSYBANK an application must be submitted containing the following information: short research plan including aims and study design, ethic application with a positive decision, specific demands regarding the right of disposition, agreements with grant organizations which regulate immaterial property, information about financing (academic grants, support from industry). All participants have the right to withdraw their samples through a simple order.
Proper citation: Hungarian Neurological-Psychiatric Biobank (RRID:SCR_003715) Copy
http://biomed.brown.edu/rhode-island-biobank/
Cryogenic facility for human tissue and fluid samples under management of Brown University Division of Biology and Medicine and supports biomedical research on Brown campus and across affiliated hospitals of Warren Alpert Medical School.
Proper citation: Brown University Rhode Island Biobank Core Facility (RRID:SCR_004289) Copy
Banyan Biomarkers was founded in 2002 by Ron Hayes, PhD , Kevin Wang, PhD, and Nancy Denslow, PhD to create the first Point of Care (POC) Blood Test to diagnose traumatic brain injury (TBI) and to diagnose neurological diseases. Initially inspired by research conducted at the University of Florida and The Evelyn F. and William McKnight Brain Institute, Banyan Biomarkers has made significant progress in developing and clinically validating novel enzyme linked immunosorbent assays (ELISAs) for traumatic brain injury (TBI). Banyan scientists have created an extensive pipeline of potential biomarkers and the company has a robust intellectual property portfolio. Jackson Streeter, Banyan''s CEO, has extensive experience in development of medical devices for acute brain injury. Currently no blood test exists for use by physicians to detect the presence and severity of brain trauma. Banyan Biomarkers'' research has identified unique and proprietary biomarkers present in the patient''s blood following injury to the brain. The detection and quantification of these biomarkers may provide early indications of brain trauma essential for earlier intervention and management. Banyan Biomarkers, Inc. offers preclinical and clinical sample analyses with a proven panel of neurological, psychiatric, neurodegenerative disease, and organ toxicity biomarker assays. The company provides analytical services to a wide range of customers including pharmaceutical companies, biotechnology companies and investigators at academic research institutes.
Proper citation: Banyan Biomarkers (RRID:SCR_004515) Copy
Collection of revertible protein trap gene-breaking transposon (GBT) insertional mutants in zebrafish with active or cryopreserved lines from initially identified lines. Open to community-wide contributions including expression and functional annotation and represents world-wide central hub for information on how to obtain these lines from diverse members of International Zebrafish Protein Trap Consortium (IZPTC) and integration within other zebrafish community databases including Zebrafish Information Network (ZFIN), Ensembl and National Center for Biotechnology Information. Registration allows users to save their favorite lines for easy access, request lines from Mayo Clinic catalog, contribute to line annotation with appropriate credit, and puts them on optional mailing list for future zfishbook newletters and updates.
Proper citation: zfishbook (RRID:SCR_006896) Copy
A biomaterial supply resource which provides high quality, clinically and neuropathologically well-characterised human brain and spinal cord tissue. The Brain Bank focuses on neurodegenerative diseases such as Alzheimer’s Disease (AD), Frontotemperal dementias (FTD) and Motor Neurone Disease (MND). However, it also contains tissues for the study of HIV, Autism and Schizophrenia, and movement disorders.
Proper citation: MRC London Neurodegenerative Diseases Brain Bank (RRID:SCR_013839) Copy
A biomaterial resource which stores and distributes dissected human brain samples and topographically oriented tissue blocks. Most brains were removed from the skull and frozen within 2-6 hours after death. The microdissection of 260 different brain nuclei is performed on frozen brains and the samples are kept in -70ºC. Materials must be studied in the course of an approved research project, which has scientific aims and is devoid of any commercial profit for the researches involved and for their respective institutions.
Proper citation: Human Brain Tissue Bank (RRID:SCR_013837) Copy
http://www.stritch.luc.edu/depts/path/residency/anatomic_pathology.htm#Neuropathology
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 31, 2016. A medical center with a neuropathology research program focused on the normal and abnormal aging process of the central nervous system and a funding source for research. The center serves as a collection site for brains in order to study normal aging and neurodegenerative diseases like Alzheimer's.
Proper citation: Loyola University Medical Center / Hines VA Brain Bank (RRID:SCR_013277) Copy
http://neurobureau.projects.nitrc.org/ADHD200/Introduction.html
Preprocessed versions of the ADHD-200 Global Competition data including both preprocessed versions of structural and functional datasets previously made available by the ADHD-200 consortium, as well as initial standard subject-level analyses. The ADHD-200 Sample is pleased to announce the unrestricted public release of 776 resting-state fMRI and anatomical datasets aggregated across 8 independent imaging sites, 491 of which were obtained from typically developing individuals and 285 in children and adolescents with ADHD (ages: 7-21 years old). Accompanying phenotypic information includes: diagnostic status, dimensional ADHD symptom measures, age, sex, intelligence quotient (IQ) and lifetime medication status. Preliminary quality control assessments (usable vs. questionable) based upon visual timeseries inspection are included for all resting state fMRI scans. In accordance with HIPAA guidelines and 1000 Functional Connectomes Project protocols, all datasets are anonymous, with no protected health information included. They hope this release will open collaborative possibilities and contributions from researchers not traditionally addressing brain data so for those whose specialties lay outside of MRI and fMRI data processing, the competition is now one step easier to join. The preprocessed data is being made freely available through efforts of The Neuro Bureau as well as the ADHD-200 consortium. They ask that you acknowledge both of these organizations in any publications (conference, journal, etc.) that make use of this data. None of the preprocessing would be possible without the freely available imaging analysis packages, so please also acknowledge the relevant packages and resources as well as any other specific release related acknowledgements. You must be logged into NITRC to download the ADHD-200 datasets, http://www.nitrc.org/projects/neurobureau
Proper citation: ADHD-200 Preprocessed Data (RRID:SCR_000576) Copy
http://www.nmr.mgh.harvard.edu/CFNT/index
Biomedical technology research center that develops and applies innovative neuroimaging technologies and techniques to enable closer examination of the human brain, and thereby contribute to better understanding of the brain in health and disease. They develop new techniques and advance existing technologies for acquisition and analysis of functionally specific images of the working brain, with unprecedented physiological precision and spatiotemporal resolution. The research and development aims to improve and extend existing methods for non-invasive magnetic resonance image analysis and acquisition, electromagnetic source imaging, optical neuroimaging, and most recently, combined MR-PET neuroimaging. The Resource provides an essential interactive environment, within which an interdisciplinary team of highly skilled scientists, engineers, and clinicians with diverse expertise in multiple modalities and disciplines. The resource supports service use of the Center's facilities by neuroscientists throughout the country, provide extensive training opportunities for students, fellows, and staff scientists, and seek to advance the field of brain mapping through active dissemination of new knowledge and technology.
Proper citation: Center for Functional Neuroimaging Technologies (RRID:SCR_001423) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented September 12, 2017.
Dataset in Bilingual exposure optimizes left-hemisphere dominance for selective attention processes in the developing brain by Arredondo, Su, Satterfield, & Kovelman (XX) Does early bilingual exposure alter the representations of cognitive processes in the developing brain? Theories of bilingual development have suggested that bilingual language switching might improve children''s executive function and foster the maturation of prefrontal brain regions that support higher cognition. To test this hypothesis, we used functional Near Infrared Spectroscopy to measure brain activity in Spanish-English bilingual and English-monolingual children during a visuo-spatial executive function task of attentional control (N=27, ages 7-13). Prior findings suggest that while young children start with bilateral activation for the task, it becomes right-lateralized with age (Konrad et al., 2005). Indeed monolinguals showed bilateral frontal activation, however young bilinguals showed greater activation in left language areas relative to right hemisphere and relative to monolinguals. The findings suggest that bilingual experience optimizes attention mechanisms in the language hemisphere, and highlight the importance of early experiences for neurodevelopmental plasticity of higher cognition. These data are made available from Ioulia Kovelman''s Language and Literacy Lab at University of Michigan and may be exported through the NIF Data Federation. To cite these data please use this text Data were published by Arredondo et al. (XX) and made available via the NIF at XX
Proper citation: Arredondo ANT fNIRS dataset1 (RRID:SCR_002653) Copy
http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEOEC.html
Data set of 48 healthy controls from a community (student) sample from Beijing Normal University in China with 3 resting state fMRI scans each. During the first scan participants were instructed to rest with their eyes closed. The second and third resting state scan were randomized between resting with eyes open versus eyes closed. In addition this dataset contains a 64-direction DTI scan for every participant. The following data are released for every participant: * 6-minute resting state fMRI scan (R-fMRI) * MPRAGE anatomical scan, defaced to protect patient confidentiality * 64-direction diffusion tensor imaging scan (2mm isotropic) * Demographic information and information on the counterbalancing of eyes open versus eyes closed.
Proper citation: Beijing: Eyes Open Eyes Closed Study (RRID:SCR_001507) Copy
http://ranchobiosciences.com/gse4271/
Curated data set from a study that investigated 77 primary high-grade astrocytomas and 23 matched recurrences so that changes in gene expression related to both survival and disease progression can be identified. Samples in the study include WHO grade III and IV astrocytomas with a wide range of survival times.
Proper citation: GSE4271 (RRID:SCR_003643) Copy
http://www.chibi.ubc.ca/WhiteText/
Freely available corpus of manually annotated brain region mentions created to facilitate text mining of neuroscience literature. The corpus contains 1,377 abstracts with 18,242 brain region annotations. Interannotator agreement was evaluated for a subset of the documents, and was 90.7% and 96.7% for strict and lenient matching respectively. We observed a large vocabulary of over 6,000 unique brain region terms and 17,000 words. For automatic extraction of brain region mentions we evaluated simple dictionary methods and complex natural language processing techniques. The dictionary methods based on neuroanatomical lexicons recalled 36% of the mentions with 57% precision. The best performance was achieved using a conditional random field (CRF) with a rich feature set. Features were based on morphological, lexical, syntactic and contextual information. The CRF recalled 76% of mentions at 81% precision, by counting partial matches recall and precision increase to 86% and 92% respectively. We suspect a large amount of error is due to coordinating conjunctions, previously unseen words and brain regions of less commonly studied organisms. We found context windows, lemmatization and abbreviation expansion to be the most informative techniques. We encourage you to test new methods and applications of the dataset. Please contact us if you do, we would like to hear about and link to your work. The abstracts are from PubMed/Medline, specifically The Journal of Comparative Neurology.
Proper citation: Automated recognition of brain region mentions in neuroscience literature. (RRID:SCR_002731) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.