Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 30 showing 581 ~ 600 out of 776 results
Snippet view Table view Download 776 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_005093

    This resource has 1+ mentions.

https://datashare.ed.ac.uk/handle/10283/3844

Genome transcriptome atlas by RNA in situ hybridization on sagittal sections of developing mouse at embryonic day 14.5. Consists of searchable database of annotated images that can be interactively viewed. Anatomy based expression profiles for coding genes and microRNAs, tissue specific genes. Expression data generated by using human and murine tissue arrays.

Proper citation: Eurexpress (RRID:SCR_005093) Copy   


  • RRID:SCR_005026

    This resource has 5000+ mentions.

http://smart.embl.de/

Software tool for identification and annotation of genetically mobile domains and analysis of domain architectures.

Proper citation: SMART (RRID:SCR_005026) Copy   


http://dgv.tcag.ca/dgv/app/home

Public repository that accepts direct submissions and provides archiving, accessioning and distribution of publicly available genomic structural variants, in all species. Variants are accessioned at the study and sample level, granting stable identifiers that can be used in publications. DGVa data is integrated with other EBI resources, including comprehensive EBI search and Ensembl genome browser. Exchanges data with companion database, dbVar, at National Center for Biotechnology Information.NOTE: since 2019 DGVa doesn't accept submissions. Please send the data for submission to European Variation Archive (EVA).

Proper citation: Database of Genomic Variants Archive (DGVa) (RRID:SCR_004896) Copy   


  • RRID:SCR_005184

    This resource has 100+ mentions.

http://phast.wishartlab.com/

A web server designed to rapidly and accurately identify, annotate and graphically display prophage sequences within bacterial genomes or plasmids. It accepts either raw DNA sequence data or partially annotated GenBank formatted data and rapidly performs a number of database comparisons as well as phage cornerstone feature identification steps to locate, annotate and display prophage sequences and prophage features. Relative to other prophage identification tools, PHAST is up to 40 times faster and up to 15% more sensitive. It is also able to process and annotate both raw DNA sequence data and Genbank files, provide richly annotated tables on prophage features and prophage quality and distinguish between intact and incomplete prophage. PHAST also generates downloadable, high quality, interactive graphics that display all identified prophage components in both circular and linear genomic views. Databases available for download include Virus DB, Prophage and virus DB, Bacteria DB, and PHAST result DB. Pre-calculated genomes for viewing are also available.

Proper citation: PHAge Search Tool (RRID:SCR_005184) Copy   


  • RRID:SCR_005187

    This resource has 1+ mentions.

http://code.google.com/p/snpdat/

A simple and easy to use high through-put analysis tool which can provide comprehensive annotation of both novel and known single nucleotide polymorphisms (SNPs) for any organism with a draft sequence and annotation. SNPdat makes possible analyses involving non-model organisms that are not supported by the vast majority of SNP annotation tools currently available. It is especially intended for use by researchers with limited bioinformatic experience.

Proper citation: SNPdat (RRID:SCR_005187) Copy   


  • RRID:SCR_005302

    This resource has 10+ mentions.

http://skatebase.org/

Portal supporting the North East Bioinformatics Collaborative''s project to sequence the genome of the Little Skate. Provided is a clearinghouse for Little Skate Genome Project and other publicly available Skate and Ray (Batoidea) genome data, and tools for data visualization and analysis. Little Skate Genome Project The little skate (Leucoraja erinacea) is a chondrichthyan (cartilaginous) fish native to the east coast of North America. Elasmobranchs (Skates, Rays, and Sharks) exhibit many fundamental vertebrate characteristics, including a neural crest, jaws and teeth, an adaptive immune system, and a pressurized circulatory system. These characteristics have been exploited to promote understanding about human physiology, immunology, stem cell biology, toxicology, neurobiology and regeneration. The development of standardized experimental protocols in elasmobranchs such as L. erinacea and the spiny dogfish shark (Squalus acanthias) has further positioned these organisms as important biomedical and developmental models. Despite this distinction, the only reported chondrichthyan genome is the low coverage (1.4x) draft genome of the elephant shark (Callorhinchus milii). To close the evolutionary gaps in available elasmobranch genome sequence data, and generate critical genomic resources for future biomedical study, the genome of L. erinacea is being sequenced by the North East Bioinformatics Collaborative (NEBC). As close evolutionary relatives, the little skate sequence will facilitate studies that employ dogfish shark and other elasmobranchs as model organisms. Skate tools include the SkateBLAST and the Skate Genome Browsers: Little Skate Mitochondrion, Thorny Skate Mitochondrion, and Ocellate Spot Skate Mitochondrion.

Proper citation: SkateBase (RRID:SCR_005302) Copy   


  • RRID:SCR_005317

    This resource has 1+ mentions.

http://en.wikipedia.org/wiki/Gene_Wiki

The Gene Wiki is a project that facilitates transferring information on human genes to Wikipedia article stubs with the goal of promoting collaboration and expansion of the articles. Number of gene articles The human genome contains an estimated 20,00025,000 protein-coding genes. The goal of the Gene Wiki project is to create seed articles for every notable human gene, that is, every gene whose function has been assigned in the peer-reviewed scientific literature. Approximately half of human genes have assigned function, therefore the total number of articles seeded by the Gene Wiki project would be expected to be in the range of 10,000 - 15,000. To date, approximately 10,271 articles have been created or augmented to include Gene Wiki project content. Expansion Once seed articles have been established, the hope and expectation is that these will be annotated and expanded by editors ranging in experience from the lay audience to students to professionals and academics. Proteins encoded by genes The majority of genes encode proteins hence understanding the function of a gene generally requires understanding of the function of the corresponding protein. In addition to including basic information about the gene, the project therefore also includes information about the protein encoded by the gene. Stubs for the Gene Wiki project are created by a bot and contain links to the following primary gene/protein databases * HUGO Gene Nomenclature Committee official gene name * Entrez Gene database * OMIM (Mendelian Inheritance in Man) database that catalogues all the known diseases with a genetic component * Amigo Gene Ontology * HomoloGene gene homologs in other species * SymAtlasRNA gene expression pattern in tissues * Protein Data Bank 3D structure of protein encoded by the gene * Uniprot (universal protein resource) a central repository of protein data

Proper citation: Gene Wiki (RRID:SCR_005317) Copy   


http://www.hgvs.org

The Society aims to foster discovery and characterization of genomic variations including population distribution and phenotypic associations. We promote collection, documentation and free distribution of genomic variation information and associated clinical variations and endeavor to foster the development of the necessary methodology and informatics. Mission Statement To enhance human health through identification and characterization of changes in the genome that lead to susceptibility to illness. To this end, to collate the genomic information necessary for molecular diagnosis, research on basic mechanisms and design of treatments of human ailments. Society Journal Human Mutation is the Society journal. Members will receive a reduced subscription to the journal if they choose to subscribe. Meetings The Society holds two scientific meetings per year. One as a satellite to either the HUGO (Human Genome Organization) annual meeting or the ESHG (European Society of Human Genetics) annual meeting and one meeting is a satellite to the ASHG (American Society of Human Genetics annual meeting. The meetings are a forum for scientists to exchange ideas and form collaborations. Prominent speakers in the field are invited as well as a call for abstracts at large. The meetings are designed to update and increase knowledge of human genome variation and generally attract a stimulating and interesting collection of abstracts in all fields of human genome variation making it an ideal forum to share information and results. Past themes include: copy number variation, pathogenic or not?, pharmacogenomics, new DNA sequencing technologies, and genotype to pheontype relationships. We invite members and non-members alike to attend these meetings. The Society holds the Annual General Meeting of the members after the scientific meeting that is a satellite of the ASHG. Exhibitor''s booths The Society usually takes out an Exhibitor''s booth at the American & European Societies of Human Genetics annual meetings and sometimes the HUGO HGM meeting. GUIDELINES & RECOMMENDATIONS Members of the Society have formulated Guidelines & Recommendations on a number of topics, but especially for nomenclature of gene variations and guidelines on variation databases.

Proper citation: Human Genome Variation Society (RRID:SCR_012989) Copy   


  • RRID:SCR_013042

    This resource has 500+ mentions.

http://commonfund.nih.gov/GTEx/

Project to study human gene expression and regulation in multiple tissues, providing valuable insights into mechanisms of gene regulation and its disease related perturbations. Genetic variation between individuals will be examined for correlation with differences in gene expression level to identify regions of the genome that influence whether and how much a gene is expressed. Includes initiatives: Novel Statistical Methods for Human Gene Expression Quantitative Trait Loci (eQTL) Analysis ,Laboratory, Data Analysis, and Coordinating Center (LDACC), caHUB Acquisition of Normal Tissues in Support of GTEx Project.

Proper citation: Genotype-Tissue Expression (RRID:SCR_013042) Copy   


  • RRID:SCR_013413

    This resource has 1+ mentions.

http://web.bioinformatics.ic.ac.uk/eqtlexplorer/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on June 1,2023. eQTL Explorer was developed as a computational resource to visualize and explore data from combined genome-wide expression and linkage studies is essential for the development of testable hypotheses. This visualization tool stores expression profiles, linkage data and information from external sources in a relational database and enables simultaneous visualization and intuitive interpretation of the combined data via a Java graphical interface. eQTL Explorer also provides a new and powerful tool to interrogate these very large and complex datasets. eQTLexplorer allows users to mine and understand data from a repository of genetical genomics experiments. It will graphically display eQTL information based on a certain number of selection criteria, including: tissue type, p-value, cis/trans, probeset Affymetrix id and PQTL type. Sponsors: This work was funded by the MRC Clinical Sciences Centre and the Wellcome Trust programme for Cardiovascular Functional Genomics.

Proper citation: eQTL Visualization Tool (RRID:SCR_013413) Copy   


http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml

This resource gives information about the U.S. Human Genome Project, which was was a 13-year effort to to discover all the estimated 20,000-25,000 human genes and make them accessible for further biological study. The primary project goals were to: - identify all the approximately 20,000-25,000 genes in human DNA, - determine the sequences of the 3 billion chemical base pairs that make up human DNA, - store this information in databases, - improve tools for data analysis, - transfer related technologies to the private sector, and - address the ethical, legal, and social issues (ELSI) that may arise from the project. To help achieve these goals, researchers also studied the genetic makeup of several nonhuman organisms. These include the common human gut bacterium Escherichia coli, the fruit fly, and the laboratory mouse. These parallel studies helped to develop technology and interpret human gene function. Sponsors: The DOE Human Genome Program and the NIH National Human Genome Research Institute (NHGRI) together sponsored the U.S. Human Genome Project.

Proper citation: Human Genome Project Information (RRID:SCR_013028) Copy   


http://www.mrc-lmb.cam.ac.uk/genomes/dolop/

DOLOP is an exclusive knowledge base for bacterial lipoproteins by processing information from 510 entries to provide a list of 199 distinct lipoproteins with relevant links to molecular details. Features include functional classification, predictive algorithm for query sequences, primary sequence analysis and lists of predicted lipoproteins from 43 completed bacterial genomes along with interactive information exchange facility. This website along will have additional information on the biosynthetic pathway, supplementary material and other related figures. DOLOP also contains information and links to molecular details for about 278 distinct lipoproteins and predicted lipoproteins from 234 completely sequenced bacterial genomes. Additionally, the website features a tool that applies a predictive algorithm to identify the presence or absence of the lipoprotein signal sequence in a user-given sequence. The experimentally verified lipoproteins have been classified into different functional classes and more importantly functional domain assignments using hidden Markov models from the SUPERFAMILY database that have been provided for the predicted lipoproteins. Other features include: primary sequence analysis, signal sequence analysis, and search facility and information exchange facility to allow researchers to exchange results on newly characterized lipoproteins.

Proper citation: DOLOP: A Database of Bacterial Lipoproteins (RRID:SCR_013487) Copy   


http://genetics.bwh.harvard.edu/pph2/

Software tool which predicts possible impact of amino acid substitution on structure and function of human protein using straightforward physical and comparative considerations. PolyPhen-2 is new development of PolyPhen tool for annotating coding nonsynonymous SNPs.

Proper citation: PolyPhen: Polymorphism Phenotyping (RRID:SCR_013189) Copy   


  • RRID:SCR_007551

    This resource has 100+ mentions.

http://www.genomesize.com

Comprehensive catalogue of animal genome size data. Haploid DNA contents (C-values, in picograms) are available for 4972 species (3231 vertebrates and 1741 non-vertebrates) based on 6518 records from 669 published sources. Data may be submitted directly to the database or reprints and notifications of new papers may be sent to database curation staff.

Proper citation: Animal Genome Size Database (RRID:SCR_007551) Copy   


  • RRID:SCR_007672

    This resource has 100+ mentions.

http://gene3d.biochem.ucl.ac.uk/Gene3D/

A large database of CATH protein domain assignments for ENSEMBL genomes and Uniprot sequences. Gene3D is a resource of form studying proteins and the component domains. Gene3D takes CATH domains from Protein Databank (PDB) structures and assigns them to the millions of protein sequences with no PDB structures using Hidden Markov models. Assigning a CATH superfamily to a region of a protein sequence gives information on the gross 3D structure of that region of the protein. CATH superfamilies have a limited set of functions and so the domain assignment provides some functional insights. Furthermore most proteins have several different domains in a specific order, so looking for proteins with a similar domain organization provides further functional insights. Strict confidence cut-offs are used to ensure the reliability of the domain assignments. Gene3D imports functional information from sources such as UNIPROT, and KEGG. They also import experimental datasets on request to help researchers integrate there data with the corpus of the literature. The website allows users to view descriptions for both single proteins and genes and large protein sets, such as superfamilies or genomes. Subsets can then be selected for detailed investigation or associated functions and interactions can be used to expand explorations to new proteins. The Gene3D web services provide programmatic access to the CATH-Gene3D annotation resources and in-house software tools. These services include Gene3DScan for identifying structural domains within protein sequences, access to pre-calculated annotations for the major sequence databases, and linked functional annotation from UniProt, GO and KEGG., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Gene3D (RRID:SCR_007672) Copy   


http://genomics.senescence.info/

Collection of databases and tools designed to help researchers study the genetics of human ageing using modern approaches such as functional genomics, network analyses, systems biology and evolutionary analyses. A major resource in HAGR is GenAge, which includes a curated database of genes related to human aging and a database of ageing- and longevity-associated genes in model organisms. Another major database in HAGR is AnAge. Featuring over 4,000 species, AnAge provides a compilation of data on aging, longevity, and life history that is ideal for the comparative biology of aging. GenDR is a database of genes associated with dietary restriction based on genetic manipulation experiments and gene expression profiling. Other projects include evolutionary studies, genome sequencing, cancer genomics, and gene expression analyses. The latter allowed them to identify a set of genes commonly altered during mammalian aging which represents a conserved molecular signature of aging. Software, namely in the form of scripts for Perl and SPSS, is made available for users to perform a variety of bioinformatic analyses potentially relevant for studying aging. The Perl toolkit, entitled the Ageing Research Computational Tools (ARCT), provides modules for parsing files, data-mining, searching and downloading data from the Internet, etc. Also available is an SPSS script that can be used to determine the demographic rate of aging for a given population. An extensive list of links regarding computational biology, genomics, gerontology, and comparative biology is also available.

Proper citation: Human Ageing Genomic Resources (RRID:SCR_007700) Copy   


  • RRID:SCR_007886

    This resource has 100+ mentions.

http://rebase.neb.com/rebase/

Database of information about restriction enzymes and related proteins containing published and unpublished references, recognition and cleavage sites, isoschizomers, commercial availability, methylation sensitivity, crystal, genome, and sequence data. DNA methyltransferases, homing endonucleases, nicking enzymes, specificity subunits and control proteins are also included. Several tools are available including REBsites, BLAST against REBASE, NEBcutter and REBpredictor. Putative DNA methyltransferases and restriction enzymes, as predicted from analysis of genomic sequences, are also listed. REBASE is updated daily and is constantly expanding. Users may submit new enzyme and/or sequence information, recommend references, or send them corrections to existing data. The contents of REBASE may be browsed from the web and selected compilations can be downloaded by ftp (ftp.neb.com). Additionally, monthly updates can be requested via email.,

Proper citation: REBASE (RRID:SCR_007886) Copy   


http://www.projects.roslin.ac.uk/cdiv/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. The objective of the project is the standardization of micro-satellite markers used within participating laboratories, use of DNA markers to define genetic diversity and to enable monitoring of breeds to promote conservation programs where required, and the determination of diversity present in rare and local breeds across Europe. The blood typing laboratories are now beginning to use micro-satellite markers as an alternative to serology for parentage verification, and are selecting a common set to be used from the several hundred micro-satellite markers available that cover the bovine genome, produced as part of the Bovine genome mapping project (See BovMaP). Work with micro-satellite markers has shown that they are valuable tools for examining genetic diversity and phylogeny in many species. However, for work carried out in different laboratories to be comparable, it is essential that the same markers are used. To maintain the compatibility of data generated by the various typing labs, it is essential that all laboratories adopt the same markers and typing protocols. It is therefore of paramount importance that the blood typing laboratories and research labs that are examining the genetic structure of the cattle populations adopt a common panel of the best micro-satellite markers available. Some pilot comparative work has been undertaken through the International Society for Animal Genetics, but so far this has only involved the blood typing laboratories. One objective of this project is to facilitate the comparison of the micro-satellite markers currently in use in the different types of laboratory and determine the efficiency of the markers available in revealing genetic differences within and among breeds. It will also be important to compare the use of markers in different laboratories to determine how robust they are and how easily results can be compared. From comparison of the markers, those that are most suitable will be selected to form a panel which will be recommended for pedigree validation and genetic surveys. Cattle are an important source of food in Europe, and intense selection has resulted in the development of specialized breeds. Selection for high-producing dairy cattle has been successful, but one associated drawback is that the cattle population, both in Europe and North America, has been skewed dramatically towards one breed, the Holstein/Friesian. So there has been a decline in the number of individuals of other breeds, and hence a general erosion of the genetic base of the cattle population. The progressive move towards the North American-type Holstein animals has also resulted in the requirement for high input/high output farming and intensive management schemes. The impact of this on the environment has been significant, e.g. pollution problems arising from the need for high nitrogen fertilizers to produce sufficient high quality fodder, and disposal problems associated with slurry waste. Poorer areas of the community have been unable to compete with such farming systems, and are more suited to low input/low output farming using traditional stock. It is however the future perspective that is of greatest concern. It is impossible to predict requirements for cattle production - quality, production type, management systems, etc. The ability to switch rapidly to alternative production will be dependent on the genetic base of the population available to selection programs. It is therefore essential to maintain the greatest genetic diversity possible in the cattle population. Whilst current farming practices are perceived to be both efficient and acceptable, the breeds less favored by commercial farmers will dwindle. It is therefore important that on an European scale efficient management of these breeds maintains the widest genetic base possible. This project aims to carry out a survey of the current genetic base of the European cattle population and to provide the tools to assist breeding programs to maintain a broad base. The blood typing laboratories are now beginning to use micro-satellite markers as an alternative to serology for parentage verification, and are selecting a common set to be used from the several hundred micro-satellite markers available that cover the bovine genome, produced as part of the Bovine genome mapping project. Early work to measure genetic diversity used blood groups to show differences between breeds and the diversity present. Unfortunately, the number of loci available are limited, with only the B system being sufficiently polymorphic to be really useful. However, since there is a wealth of information available from such typing, this information can be used to estimate changes in the genetic structure of cattle populations across Europe over the past twenty years. More recently mini-satellite probes have been used to generate ''genetic fingerprints'' which have been used to show differences between individuals. Such fingerprints have been used to estimate genetic diversity - the greater the number of bands revealed by the fingerprint being equated with greater diversity. This is valid within limits. The main disadvantage of the fingerprint approach is that the chromosomal location and number of loci being sampled, and so the proportion of the genome examined, is unknown. The allelic bands on the gel cannot be easily identified, so allele inheritance cannot be addressed making it impossible to trace ancestry. Through the EC funded BovMaP project, large numbers of highly polymorphic micro-satellite markers have become available, which are being mapped on the bovine genome. These markers are particularly suited to measuring genetic diversity, and markers can be selected to cover the entire genome.

Proper citation: CaDBase: Genetic diversity in cattle (RRID:SCR_008146) Copy   


  • RRID:SCR_008145

    This resource has 1+ mentions.

http://locus.jouy.inra.fr/cgi-bin/bovmap/intro.pl

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. Database containing information on the cattle genome comprising loci list, phenes list, homology query, cattle maps, gene list, and chromosome homology. The objective of BovMap is to develop a set of anchored loci for the cattle genome map. In total, 58 clones were hybridized with chromosomes and identified loci on 22 of the 31 different bovine chromosomes. Three clones contained satellite DNA. Two or more markers were placed on 12 chromosomes. Sequencing of the microsatellites and flanking regions was performed directly from 43 cosmids, as previously reported. Primers were developed for 39 markers and used to describe the polymorphism associated with the corresponding loci. Users are also allowed to summit their own data for Bovmap. An integrated cytogenetic and meiotic map of the bovine genome has also been developed around the Bovmap database. One objective that Bovmap uses as the mapping strategy for the bovine genome uses large insert clones as a tool for physical mapping and as a source of highly polymorphic microsatellites for genetic typing.

Proper citation: BovMap Database (RRID:SCR_008145) Copy   


  • RRID:SCR_008139

    This resource has 1+ mentions.

http://www.genome.wisc.edu/

The E. coli Genome Project has the goal of completely sequencing the E. coli and human genomes. They began isolation of an overlapping lambda clonebank of E. coli K-12 strain MG1655. Those clones served as the starting material in our initial efforts to sequence the whole genome. Improvements in sequencing technology have since reached the point where whole-genome sequencing of microbial genomes is routine, and the human genome has in fact been completed. They initiated additional sequencing efforts, concentrating on pathogenic members of the family Enterobacteriaceae -- to which E. coli belongs. They also began a systematic functional characterization of E. coli K-12 genes and their regulation, using the whole genome sequence to address how the over 4000 genes of this organism act together to enable its survival in a wide range of environments.

Proper citation: E. coli Genome project (RRID:SCR_008139) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X