Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://www.mcdb.ucla.edu/Research/Hartenstein/dbla/index.html
Atlas providing structure and development of Drosophila brain lineages. Used to learn about projection pattern of lineages as first step towards reconstructing and understanding all neurons.
Proper citation: Drosphila Brain Lineage Atlas (RRID:SCR_017507) Copy
http://findlab.stanford.edu/functional_ROIs.html
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on June 29,2023. Atlas of functional ROIs (fROIs) containing 499 regions, with extensive gray matter coverage. Atlases are available for download directly from the website.
Proper citation: 499 fROI atlas (RRID:SCR_014756) Copy
http://connectivity.brain-map.org/transgenic
Data detailing transgene expression in Cre and other driver lines for adult and developing brain. Experiments include colorimetric in situ hybridization, fluorescent in situ hybridization and other histological methods. Expression maps of transgenic Cre and other driver lines in mice.
Proper citation: Allen Brain Atlas expression map of Cre and other drivers (RRID:SCR_017510) Copy
Atlas with global nervous system nomenclature ontology and flatmaps for structure of rat brain. Open access resource for neuroscience community.
Proper citation: Brain Maps (RRID:SCR_017314) Copy
Mindboggle (http://mindboggle.info) is open source software for analyzing the shapes of brain structures from human MRI data. The following publication in PLoS Computational Biology documents and evaluates the software: Klein A, Ghosh SS, Bao FS, Giard J, Hame Y, Stavsky E, Lee N, Rossa B, Reuter M, Neto EC, Keshavan A. (2017) Mindboggling morphometry of human brains. PLoS Computational Biology 13(3): e1005350. doi:10.1371/journal.pcbi.1005350
Proper citation: Mindboggle (RRID:SCR_002438) Copy
http://sleep.alleninstitute.org
Collection of gene expression data in mouse brain for five different conditions of sleep and wakefulness to understand sleep deprivation and dynamic changes underlying sleep and wake cycles. Platform to generate cellular resolution expression data.
Proper citation: Allen Institute for Brain Science Sleep Study (RRID:SCR_002983) Copy
http://surfer.nmr.mgh.harvard.edu/fswiki/Tracula
Software tool developed for automatically reconstructing a set of major white matter pathways in the brain from diffusion weighted images using probabilistic tractography. This method utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual intervention with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. The trac-all script is used to preprocess raw diffusion data (correcting for eddy current distortion and B0 field inhomogenities), register them to common spaces, model and reconstruct major white matter pathways (included in the atlas) without any manual intervention. trac-all may be used to execute all the above steps or parts of it depending on the dataset and user''''s preference for analyzing diffusion data. Alternatively, scripts exist to execute chunks of each processing pipeline, and individual commands may be run to execute a single processing step. To explore all the options in running trac-all please refer to the trac-all wiki. In order to use this script to reconstruct tracts in Diffusion images, all the subjects in the dataset must have Freesurfer Recons.
Proper citation: TRACULA (RRID:SCR_013152) Copy
http://www.nitrc.org/projects/atag_mri_scans/
Data sets from the atlasing of the basal ganglia (ATAG) consortium, which provides ultra-high resolution 7Tesla (T) magnetic resonance imaging (MRI) scans from young, middle-aged, and elderly participants. They include whole-brain and reduced field-of-view MP2RAGE and T2 scans with ultra-high resolution at a sub millimeter scale. The data can be used to develop new algorithms that help building new high-resolution atlases both in the basic and clinical neurosciences. They can also be used to inform the exact positioning of deep-brain electrodes relevant in patients with Parkinsons disease and neuropsychiatric diseases.
Proper citation: 7T Structural MRI scans ATAG (RRID:SCR_014084) Copy
https://singlecell.broadinstitute.org/single_cell
Portal specializes in visualizing and disseminating single cell data. Allows you to use natural language and faceted search to discover other scientists’ research and share your own findings. Each study includes information on cell types, singular or multiple gene expression, and spatial transcriptomics. Interactive visualizations allow to explore cell clusters and search for related genes.
Proper citation: Single Cell Portal (RRID:SCR_014816) Copy
https://github.com/mitragithub/Registration
Software package to align brain slice images in atlas free manner.
Proper citation: Registration Software Mitra Lab (RRID:SCR_018353) Copy
The Electronic Prenatal Mouse Brain Atlas, EPMBA, at present consists of two sets of annotated images of coronal sections from Gestational Day (GD) 12 heads and GD 16 brains of C57BL/6J mice. Ten micron thick sections were stained with hematoxylin and eosin. Images were prepared at various resolutions for annotations and for high resolution presentation. A subset of sections were annotated and linked to anatomical terms. Additionally, horizontal sections of a GD 12 head were aligned and re-assembled into a 3D volume for digital sectioning in arbitrarily oblique planes. These images were captured using a Nikon E800 stereomicroscope with a 10X objective. The resolution is 1.35 pixels/micrometer. The PC program used to grab the images, Microbrightfield's Neurolucida (version 6), stitched together a mosaic of between 10 and 50 high-res images for each tissue slice, while the user focused the scope for each mosaic tile. Since the nature of optic lenses is to focus on one central point, it was difficult to obtain a uniformly-focused field of vision; as such, small areas of these images are blurred. Images were then transferred to a Macintosh and processed in Adobe Photoshop (version 7). Color levels were adjusted for maximum clarity of the tissue, and areas surrounding the tissue were cleared of artifacts. Each image is approximately 3350 pixels wide by 2650 pixels high. A scale bar with a length of 1350 pixels/mm is visible in the lower right-hand corner of each image. The annotations have been completed for the Atlas of Developing Mouse Brain Gestational (Embryonic) Day 12 (7/5/07) as well as the Atlas of Developing Mouse Brain Embryonic Day 16 (4/26/07). The 3D EPMBA data set has been mounted on a NeuroTerrain Atlas Server (NtAS). (6/27/07).
Proper citation: EPMBA.ORG: Electronic Prenatal Mouse Brain Atlas (RRID:SCR_001882) Copy
http://zebrafinch.brainarchitecture.org/
Atlas of high resolution Nissl stained digital images of the brain of the zebra finch, the mainstay of songbird research. The cytoarchitectural high resolution photographs and atlas presented here aim at facilitating electrode placement, connectional studies, and cytoarchitectonic analysis. This initial atlas is not in stereotaxic coordinate space. It is intended to complement the stereotaxic atlases of Akutegawa and Konishi, and that of Nixdorf and Bischof. (Akutagawa E. and Konishi M., stereotaxic atalas of the brain of zebra finch, unpublished. and Nixdorf-Bergweiler B. E. and Bischof H. J., A Stereotaxic Atlas of the Brain Of the Zebra Finch, Taeniopygia Guttata, http://www.ncbi.nlm.nih.gov.) The zebra finch has proven to be the most widely used model organism for the study of the neurological and behavioral development of birdsong. A unique strength of this research area is its integrative nature, encompassing field studies and ethologically grounded behavioral biology, as well as neurophysiological and molecular levels of analysis. The availability of dimensionally accurate and detailed atlases and photographs of the brain of male and female animals, as well as of the brain during development, can be expected to play an important role in this research program. Traditionally, atlases for the zebra finch brain have only been available in printed format, with the limitation of low image resolution of the cell stained sections. The advantages of a digital atlas over a traditional paper-based atlas are three-fold. * The digital atlas can be viewed at multiple resolutions. At low magnification, it provides an overview of brain sections and regions, while at higher magnification, it shows exquisite details of the cytoarchitectural structure. * It allows digital re-slicing of the brain. The original photographs of brain were taken in certain selected planes of section. However, the brains are seldom sliced in exactly the same plane in real experiments. Re-slicing provides a useful atlas in user-chosen planes, which are otherwise unavailable in the paper-based version. * It can be made available on the internet. High resolution histological datasets can be independently evaluated in light of new experimental anatomical, physiological and molecular studies.
Proper citation: Zebrafinch Brain Architecture Project (RRID:SCR_004277) Copy
http://cmrm.med.jhmi.edu/cmrm/atlas/human_data/file/JHUtemplate_newuser.html
DTI white matter atlases with different data sources and different image processing. These include single-subject, group-averaged, B0 correction, processed atlases (White Matter Parcellation Map, Tract-probability maps, Conceptual difference between the WMPM and tract-probability maps), and linear or non-linear transformation for automated white matter segmentation. # Adam single-subject white matter atlas (old version): These are electronic versions of atlases published in Wakana et al, Radiology, 230, 77-87 (2004) and MRI Atlas of Human White Matter, Elsevier. ## Original Adam Atlas: 256 x 256 x 55 (FOV = 246 x 246 mm / 2.2 mm slices) (The original matrix is 96x96x55 (2.2 mm isotropic) which is zerofilled to 256 x 256 ## Re-sliced Adam Atlas: 246 x 246 x 121 (1 mm isotropic) ## Talairach Adam: 246 x 246 x 121 (1 mm isotropic) # New Eve single-subject white matter atlas: The new version of the single-subject white matter atlas with comprehensive white matter parcellation. ## MNI coordinate: 181 x 217 x 181 (1 mm isotropic) ## Talairach coordinate: 181 x 217 x 181 (1 mm isotropic) # Group-averaged atlases: This atlas was created from their normal DTI database (n = 28). The template was MNI-ICBM-152 and the data from the normal subjects were normalized by affine transformation. Image dimensions are 181x217x181, 1 mm isotropic. There are two types of maps. The first one is the averaged tensor map and the second one is probabilistic maps of 11 white matter tracts reconstructed by FACT. # ICBM Group-averaged atlases: This atlas was created from ICBM database. All templates follow Radiology convention. You may need to flip right and left when you use image registration software that follows the Neurology convention.
Proper citation: DTI White Matter Atlas (RRID:SCR_005279) Copy
http://www.dartmouth.edu/~rswenson/Atlas/
On line labeled atlas of the human brain developed by Dr. Rand Swenson of Dartmouth Medical School. It includes gross anatomical and MRI-generated slices (Axial T1-weighted MRI and Coronal T2 MRI weighted, along with Magnetic resonance arteriogram (MRA) and Magnetic resonance venogram (MRV)images. Labels may be turned on and off. A companion on-line textbook is also available. The site says it is still under construction, although the copyright is 2009. * Atlas of Gross Brain Topography * Atlas of the Brain Stem in Cross Section * Atlas of the Brain in Axial Slices * Atlas of the Brain in Coronal Slices * Atlas of the Head in Axial Slices * Axial T1-weighted MRI * Axial T2-weighted MRI * Coronal T1 MRI * Coronal T2 MRI * Magnetic resonance arteriogram (MRA) * Magnetic resonance venogram (MRV)
Proper citation: Atlas of the Brain (RRID:SCR_005967) Copy
http://www.civm.duhs.duke.edu/neuro2012ratatlas/
Multidimensional atlas of the adult Wistar rat brain based on magnetic resonance histology (MRH). The atlas has been carefully aligned with the widely used Paxinos-Watson atlas based on optical sections to allow comparisons between histochemical and immuno-marker data, and the use of the Paxinos-Watson abbreviation set. Our MR atlas attempts to make a seamless connection with the advantageous features of the Paxinos-Watson atlas, and to extend the utility of the data through the unique capabilities of MR histology: a) ability to view the brain in the skull with limited distortion from shrinkage or sectioning; b) isotropic spatial resolution, which permits sectioning along any arbitrary axis without loss of detail; c) three-dimensional (3D) images preserving spatial relationships; and d) widely varied contrast dependent on the unique properties of water protons. 3D diffusion tensor images (DTI) at what we believe to be the highest resolution ever attained in the rat provide unique insight into white matter structures and connectivity. The 3D isotropic data allow registration of multiple data sets into a common reference space to provide average atlases not possible with conventional histology. The resulting multidimensional atlas that combines Paxinos-Watson with multidimensional MRH images from multiple specimens provides a new, comprehensive view of the neuroanatomy of the rat and offers a collaborative platform for future rat brain studies. To access the atlas, click view supplementary materials in CIVMSpace at the bottom of the following webpage.
Proper citation: Adult Wistar Rat Atlas (RRID:SCR_006288) Copy
http://blog.wholebraincatalog.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 6,2023. The blog of the Whole Brain Catalog.
Proper citation: Whole Brain Catalog Blog (RRID:SCR_000582) Copy
Biomedical Technology Resource Center that develops image processing and analysis techniques for basic and clinical neurosciences. The NAC research approach emphasizes both specific core technologies and collaborative application projects. The core activity of the center is the development of algorithms and techniques for postprocessing of imaging data. New segmentation techniques aid identification of brain structures and disease. Registration methods are used for relating image data to specific patient anatomy or one set of images to another. Visualization tools allow the display of complex anatomical and quantitative information. High-performance computing hardware and associated software techniques further accelerate algorithms and methods. Digital anatomy atlases are developed for the support of both interactive and algorithmic computational tools. Although the emphasis of the NAC is on the dissemination of concepts and techniques, specific elements of the core software technologies have been made available to outside researchers or the community at large. The NAC's core technologies serve the following major collaborative projects: Alzheimer's disease and the aging brain, morphometric measures in schizophrenia and schizotypal disorder, quantitative analysis of multiple sclerosis, and interactive image-based planning and guidance in neurosurgery. One or more NAC researchers have been designated as responsible for each of the core technologies and the collaborative projects.
Proper citation: Neuroimage Analysis Center (RRID:SCR_008998) Copy
http://ml-neuronbrowser.janelia.org/
Interactive web platform for anyone to explore, search, filter and visualize the single neuron reconstructions.
Proper citation: MouseLight Neuron Browser (RRID:SCR_016669) Copy
Software tool as a cross-platform NIfTI format image viewer. Used for viewing and exporting of brain images. MRIcroGL is a variant of MRIcron.
Proper citation: MRIcron (RRID:SCR_002403) Copy
Forum for collaborative projects in the field of brain science. Everyone is invited to submit projects, either existing ones that you want to see featured or new ones that you want launch and work on in a collaborative, open way.
Proper citation: brainhack.org (RRID:SCR_000195) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.