Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://cagt.bu.edu/page/PRECISE_about
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 12,2023. Database of interactions between amino acid residues of enzyme and its ligands. Provides summary of interactions between amino acid residues of enzyme and its various ligands including substrate and transition state analogues, cofactors, inhibitors, and products., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: PRECISE (RRID:SCR_007874) Copy
http://locus.jouy.inra.fr/cgi-bin/lgbc/mapping/common/intro2.pl?BASE=goat
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. This website contains information about the mapping of the caprine genome. It contains loci list, phenes list, cartography, gene list, and other sequence information about goats. This website contains 731 loci, 271 genes, and 1909 homologue loci on 112 species. It also allows users to summit their own data for Goatmap. ARK-Genomics is not-for-profit and has collaborators from all over the world with an interest in farm animal genomics and genetics. ARK-Genomics was initially set up in 2000 with a grant awarded from the BBSRC IGF (Investigating Gene Function) initiative and from core resources of the Roslin Institute to provide a laboratory for automated analysis of gene expression using state-of-the-art genomic facilities. Since then, ARK-Genomics has expanded considerably, building up considerable expertise and resources.
Proper citation: GoatMap Database (RRID:SCR_008144) Copy
http://www.sanger.ac.uk/Projects/Microbes/
This website includes a list of projects that the Sanger Institute is currently working on or completed. All projects consist of the genomic sequencing of different bacteria. Each description of the bacteria includes its classification, a description, and the types of diseases that the bacteria is likely to cause. The Sanger Institute bacterial sequencing effort is concentrated on pathogens and model organisms. Data is accessible in a number of ways; for each organism there is a BLAST server, allowing users to search the sequences with their own query and retrieve the matching contigs. Sequences can also be downloaded directly by FTP. Data is accessible in a number of ways; for each organism there is a BLAST server, allowing you to search the sequences with your own query and retrieve the matching contigs. Sequences can also be downloaded directly by FTP. The primary sequence viewer and annotation tool, Artemis is available for download. This is a portable Java program which is used extensively within the Microbial Genomes group for the analysis and annotation of sequence data from cosmids to whole genomes. The Artemis Comparison Tool (ACT) is also useful for interactive viewing of the comparisons between large and small sequences.
Proper citation: Bacterial Genomes (RRID:SCR_008141) Copy
http://genome.wustl.edu/projects/detail/human-gut-microbiome/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 19,2022. Human Gut Microbiome Initiative (HGMI) seeks to provide simply annotated, deep draft genome sequences for 100 cultured representatives of the phylogenetic diversity documented by 16S rRNA surveys of the human gut microbiota. Humans are supra-organisms, composed of 10 times more microbial cells than human cells. Therefore, it seems appropriate to consider ourselves as a composite of many species - human, bacterial, and archaeal - and our genome as an amalgamation of human genes and the genes in ''our'' microbial genomes (''microbiome''). In the same sense, our metabolome can be considered to be a synthesis of co-evolved human and microbial traits. The total number of genes present in the human microbiome likely exceeds the number of our H. sapiens genes by orders of magnitude. Thus, without an understanding of our microbiota and microbiome, it not possible to obtain a complete picture of our genetic diversity and of our normal physiology. Our intestine is home to our largest collections of microbes: bacterial densities in the colon (up to 1 trillion cells/ml of luminal contents) are the highest recorded for any known ecosystem. The vast majority of phylogenetic types in the distal gut microbiota belong to just two divisions (phyla) of the domain Bacteria - the Bacteroidetes and the Firmicutes. Members of eight other divisions have also been identified using culture-independent 16S rRNA gene-based surveys. Metagenomic studies of complex microbial communities residing in our various body habitats are limited by the availability of suitable reference genomes for confident assignment of short sequence reads generated by highly parallel DNA sequencers, and by knowledge of the professions (niches) of community members. Therefore, HGMI, which represents a collaboration between Washington University''s Genome Center and its Center for Genome Sciences, seeks to provide simply annotated, deep draft genome sequences for 100 cultured representatives of the phylogenetic diversity documented by 16S rRNA surveys of the human gut microbiota.
Proper citation: Human Gut Microbiome Initiative (RRID:SCR_008137) Copy
https://www.ncbi.nlm.nih.gov/genbank/dbest/
Database as a division of GenBank that contains sequence data and other information on single-pass cDNA sequences, or Expressed Sequence Tags, from a number of organisms.
Proper citation: dbEST (RRID:SCR_008132) Copy
http://www.gene-regulation.com/pub/databases.html
In an effort to strongly support the collaborative nature of scientific research, BIOBASE offers academic and non-profit organizations free access to reduced functionality versions of their products. TRANSFAC Professional provides gene regulation analysis solutions, offering the most comprehensive collection of eukaryotic gene regulation data. The professional paid subscription gives customers access to up-to-date data and tools not available in the free version. The public databases currently available for academic and non-profit organizations are: * TRANSFAC: contains data on transcription factors, their experimentally-proven binding sites, and regulated genes. Its broad compilation of binding sites allows the derivation of positional weight matrices. * TRANSPATH: provides data about molecules participating in signal transduction pathways and the reactions they are involved in, resulting in a complex network of interconnected signaling components.TRANSPATH focuses on signaling cascades that change the activities of transcription factors and thus alter the gene expression profile of a given cell. * PathoDB: is a database on pathologically relevant mutated forms of transcription factors and their binding sites. It comprises numerous cases of defective transcription factors or mutated transcription factor binding sites, which are known to cause pathological defects. * S/MARt DB: presents data on scaffold or matrix attached regions (S/MARs) of eukaryotic genomes, as well as about the proteins that bind to them. S/MARs organize the chromatin in the form of functionally independent loop domains gained increasing support. Scaffold or Matrix Attached Regions (S/MARs) are genomic DNA sequences through which the chromatin is tightly attached to the proteinaceous scaffold of the nucleus. * TRANSCompel: is a database on composite regulatory elements affecting gene transcription in eukaryotes. Composite regulatory elements consist of two closely situated binding sites for distinct transcription factors, and provide cross-coupling of different signaling pathways. * PathoSign Public: is a database which collects information about defective cell signaling molecules causing human diseases. While constituting a useful data repository in itself, PathoSign is also aimed at being a foundational part of a platform for modeling human disease processes.
Proper citation: Gene Regulation Databases (RRID:SCR_008033) Copy
http://ncv.unl.edu/Angelettilab/HPV/Database.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 23, 2016. The Human Papillomaviruses Database collects, curates, analyzes, and publishes genetic sequences of papillomaviruses and related cellular proteins. It includes molecular biologists, sequence analysts, computer technicians, post-docs and graduate research assistants. This Web site has two main branches. The first contains our four annual data books of papillomavirus information, called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. and the second contains papillomavirus genetic sequence data. There is also a New Items location where we store the latest changes to the database or any other current news of interest. Besides the compendium, we also provide genetic sequence information for papilloma viruses and related cellular proteins. Each year they publish a compendium of papillomavirus information called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. which can now be downloaded from this Web site.
Proper citation: HPV Sequence Database (RRID:SCR_008154) Copy
Genomatix is a privately held company that offers software, databases, and services aimed at understanding gene regulation at the molecular level representing a central part of systems biology. Its multilayer integrative approach is a working implementation of systems biology principles. Genomatix combines sequence analysis, functional promoter analysis, proprietary genome annotation, promoter sequence databases, comparative genomics, scientific literature data mining, pathway databases, biological network databases, pathway analysis, network analysis, and expression profiling into working solutions and pipelines. It also enables better understanding of biological mechanisms under different conditions and stimuli in the biological context of your data. Some of Genomatix'' most valuable assets are the strong scientific background and the years of experience in research & discovery as well as in development & application of scientific software. Their firsthand knowledge of all the complexities involved in the in-silico analysis of biological data makes them a first-rate partner for all scientific projects involving the evaluation of gene regulatory mechanisms. The Genomatix team has more than a decade of scientific expertise in the successful application of computer aided analysis of gene regulatory networks, which is reflected by more than 150 peer reviewed scientific publications from Genomatix'' scientists More than 35,000 researchers in industry and academia around the world use this technology. The software available in Genomatix are: - GenomatixSuite: GenomatixSuite is our comprehensive software bundle including ElDorado, Gene2Promoter, GEMS Launcher, MatInspector and MatBase. GenomatixSuite PE also includes BiblioSphere Pathway Edition. Chromatin IP Software - RegionMiner: Fast, extensive analysis of genomic regions. - ChipInspector: Discover the real power of your microarray data. Genome Annotation Software - ElDorado: Extended Genome Annotation. - Gene2Promoter: Retrieve & analyze promoters - GPD: The Genomatix Promoter Database, which is now included with Gene2Promoter. Knowledge Mining Software - BiblioSpere : The next level of pathway/genomics analysis. - LitInspector: Literature and pathway analysis for free. Sequence Analysis Software - GEMS Launcher: Our integrated collection of sequence analysis tools. - MalInspector: Search transcription factor binding sites - MatBase: The transcription factor knowledge base. Other (no registration required) Software - DiAlign: Multiple alignment of DNA/protein sequence. - Genomatix tools: Various small tools for sequence statistics, extraction, formatting, etc.
Proper citation: Genomatix Software: Understanding Gene Regulation (RRID:SCR_008036) Copy
http://www.osc.riken.jp/english/
Omics Science Center is aiming to develop a comprehensive system called Life Science Accelerator(LSA) for the advancement of omics research. The LSA is a comprehensive system consists of biological resources, human resources, technologies, know-how, and essential administrative ability. Ultimate goal of LSA is to support and accelerate the advancement in life science research. Omics is the comprehensive study of molecules in living organisms. The complete sequencing of genomes (the complete set of genes in an organism) has enabled rapid developments in the collection and analysis of various types of comprehensive molecular data such as transcriptomes (the complete set of gene expression data) and proteomes (the complete set of intracellular proteins). Fundamental omics research aims to link these omics data to molecular networks and pathways in order to advance the understanding of biological phenomena as systems at the molecular level.
Proper citation: RIKEN Omics Science Center (RRID:SCR_008241) Copy
Bioinformatics Resource Center for invertebrate vectors. Provides web-based resources to scientific community conducting basic and applied research on organisms considered potential agents of biowarfare or bioterrorism or causing emerging or re-emerging diseases.
Proper citation: VectorBase (RRID:SCR_005917) Copy
http://newt-omics.mpi-bn.mpg.de/index.php
Newt-omics is a database, which enables researchers to locate, retrieve and store data sets dedicated to the molecular characterization of newts. Newt-omics is a transcript-centered database, based on an Expressed Sequence Tag (EST) data set from the newt, covering ~50,000 Sanger sequenced transcripts and a set of high-density microarray data, generated from regenerating hearts. Newt-omics also contains a large set of peptides identified by mass spectrometry, which was used to validate 13,810 ESTs as true protein coding. Newt-omics is open to implement additional high-throughput data sets without changing the database structure. Via a user-friendly interface Newt-omics allows access to a huge set of molecular data without the need for prior bioinformatical expertise. The newt Notopthalmus viridescens is the master of regeneration. This organism is known for more than 200 years for its exceptional regenerative capabilities. Newts can completely replace lost appendages like limb and tail, lens and retina and parts of the central nervous system. Moreover, after cardiac injury newts can rebuild the functional myocardium with no scar formation. To date only very limited information from public databases is available. Newt-Omics aims to provide a comprehensive platform of expressed genes during tissue regeneration, including extensive annotations, expression data and experimentally verified peptide sequences with yet no homology to other publicly available gene sequences. The goal is to obtain a detailed understanding of the molecular processes underlying tissue regeneration in the newt, that may lead to the development of approaches, efficiently stimulating regenerative pathways in mammalians. * Number of contigs: 26594 * Number of est in contigs: 48537 * Number of transcripts with verified peptide: 5291 * Number of peptides: 15169
Proper citation: Newtomics (RRID:SCR_006073) Copy
http://www.nematodes.org/nembase4/
NEMBASE is a comprehensive Nematode Transcriptome Database including 63 nematode species, over 600,000 ESTs and over 250,000 proteins. Nematode parasites are of major importance in human health and agriculture, and free-living species deliver essential ecosystem services. The genomics revolution has resulted in the production of many datasets of expressed sequence tags (ESTs) from a phylogenetically wide range of nematode species, but these are not easily compared. NEMBASE4 presents a single portal into extensively functionally annotated, EST-derived transcriptomes from over 60 species of nematodes, including plant and animal parasites and free-living taxa. Using the PartiGene suite of tools, we have assembled the publicly available ESTs for each species into a high-quality set of putative transcripts. These transcripts have been translated to produce a protein sequence resource and each is annotated with functional information derived from comparison with well-studied nematode species such as Caenorhabditis elegans and other non-nematode resources. By cross-comparing the sequences within NEMBASE4, we have also generated a protein family assignment for each translation. The data are presented in an openly accessible, interactive database. An example of the utility of NEMBASE4 is that it can examine the uniqueness of the transcriptomes of major clades of parasitic nematodes, identifying lineage-restricted genes that may underpin particular parasitic phenotypes, possible viral pathogens of nematodes, and nematode-unique protein families that may be developed as drug targets.
Proper citation: NEMBASE (RRID:SCR_006070) Copy
http://hfv.lanl.gov/content/index
The Hemorrhagic Fever Viruses (HFV) sequence database collects and stores sequence data and provides a user-friendly search interface and a large number of sequence analysis tools, following the model of the highly regarded and widely used Los Alamos HIV database. The database uses an algorithm that aligns each sequence to a species-wide reference sequence. The NCBI RefSeq database is used for this; if a reference sequence is not available, a Blast search finds the best candidate. Using this method, sequences in each genus can be retrieved pre-aligned. Hemorrhagic fever viruses (HFVs) are a diverse set of over 80 viral species, found in 10 different genera comprising five different families: arena-, bunya-, flavi-, filo- and togaviridae. All these viruses are highly variable and evolve rapidly, making them elusive targets for the immune system and for vaccine and drug design. About 55,000 HFV sequences exist in the public domain today. A central website that provides annotated sequences and analysis tools will be helpful to HFV researchers worldwide.
Proper citation: HFV Database (RRID:SCR_006017) Copy
http://athina.biol.uoa.gr/DAM-Bio/
An integrated environment designed to support protein sequence and structure analysis on the web.
Proper citation: DAM-Bio (RRID:SCR_006226) Copy
http://aias.biol.uoa.gr/OMPdb/
A database of Beta-barrel outer membrane proteins from Gram-negative bacteria. The web interface of OMPdb offers the user the ability not only to view the available data, but also to submit advanced queries for text search within the database''s protein entries or run BLAST searches against the database. The most up-to-date version of the database (as well as all past versions) can be downloaded in various formats (flat text, XML format or raw FASTA sequences). For constructing OMPdb, multiple freely accessible resources were combined and a detailed literature search was performed. The classification of OMPdb''s protein entries into families is based mainly on structural and functional criteria. Information included in the database consists of sequence data, as well as annotation for structural characteristics (such as the transmembrane segments), literature references and links to other public databases, features that are unique worldwide. Along with the database, a collection of profile Hidden Markov Models that were shown to be characteristic for Beta-barrel outer membrane proteins was also compiled. This set, when used in combination with our previously developed algorithms (PRED-TMBB, MCMBB and ConBBPRED) will serve as a powerful tool in matters of discrimination and classification of novel Beta-barrel proteins and whole-genome analyses., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: OMPdb (RRID:SCR_006221) Copy
A fungal rDNA internal transcribed spacer (ITS) sequence database (although additional genes and genetic markers are also welcome) to facilitate identification of environmental samples of fungal DNA. Additional important features include user annotation of INSD sequences to add metadata on, e.g., locality, habitat, soil, climate, and interacting taxa. The user can furthermore annotate INSD sequences with additional species identifications that will appear in the results of any analyses done. UNITE focuses on high-quality ITS sequences generated from fruiting bodies collected and identified by experts and deposited in public herbaria. In addition, it also holds all fungal ITS sequences in the International Nucleotide Sequence Databases (INSD: NCBI, EMBL, DDBJ). Both sets of sequences may be used in any analyses carried out. UNITE is accompanied by a project management system called PlutoF, where users can store field data, document the sequencing lab procedures, manage sequences, and make analyses. PlutoF intends to make it possible for taxonomists, ecologists, and biogeographers to use a common platform for data storage, handling, and analyses, with the intent of facilitating an integration of these disciplines. A user can have an unlimited number of projects but still make analyses across any project data available to him.
Proper citation: UNITE (RRID:SCR_006518) Copy
A comparative platform for green plant genomics. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology / paralogy relationships as well as clade specific genes and gene expansions. As of release v9.1, Phytozome provides access to forty-one sequenced and annotated green plant genomes which have been clustered into gene families at 20 evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are hyper-linked and searchable., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Phytozome (RRID:SCR_006507) Copy
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
Consortium that puts sequences into a chromosome context and provides the best possible reference assembly for human, mouse, and zebrafish via FTP. Tools to facilitate the curation of genome assemblies based on the sequence overlaps of long, high quality sequences.
Proper citation: Genome Reference Consortium (RRID:SCR_006553) Copy
Model organism database for the social amoeba Dictyostelium discoideum that provides the biomedical research community with integrated, high quality data and tools for Dictyostelium discoideum and related species. dictyBase houses the complete genome sequence, ESTs, and the entire body of literature relevant to Dictyostelium. This information is curated to provide accurate gene models and functional annotations, with the goal of fully annotating the genome to provide a ''''reference genome'''' in the Amoebozoa clade. They highlight several new features in the present update: (i) new annotations; (ii) improved interface with web 2.0 functionality; (iii) the initial steps towards a genome portal for the Amoebozoa; (iv) ortholog display; and (v) the complete integration of the Dicty Stock Center with dictyBase. The Dicty Stock Center currently holds over 1500 strains targeting over 930 different genes. There are over 100 different distinct amoebozoan species. In addition, the collection contains nearly 600 plasmids and other materials such as antibodies and cDNA libraries. The strain collection includes: * strain catalog * natural isolates * MNNG chemical mutants * tester strains for parasexual genetics * auxotroph strains * null mutants * GFP-labeled strains for cell biology * plasmid catalog The Dicty Stock Center can accept Dictyostelium strains, plasmids, and other materials relevant for research using Dictyostelium such as antibodies and cDNA or genomic libraries.
Proper citation: Dictyostelium discoideum genome database (RRID:SCR_006643) Copy
DPVweb provides a central source of information about viruses, viroids and satellites of plants, fungi and protozoa. Comprehensive taxonomic information, including brief descriptions of each family and genus, and classified lists of virus sequences are provided. The database also holds detailed, curated, information for all sequences of viruses, viroids and satellites of plants, fungi and protozoa that are complete or that contain at least one complete gene. For comparative purposes, it also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA genome. The start and end positions of each feature (gene, non-translated region and the like) have been recorded and checked for accuracy. As far as possible, nomenclature for genes and proteins are standardized within genera and families. Sequences of features (either as DNA or amino acid sequences) can be directly downloaded from the website in FASTA format. The sequence information can also be accessed via client software for PC computers (freely downloadable from the website) that enable users to make an easy selection of sequences and features of a chosen virus for further analyses. The public sequence databases contain vast amounts of data on virus genomes but accessing and comparing the data, except for relatively small sets of related viruses can be very time consuming. The procedure is made difficult because some of the sequences on these databases are incorrectly named, poorly annotated or redundant. The NCBI Reference Sequence project (1) provides a comprehensive, integrated, non-redundant set of sequences, including genomic DNA, transcript (RNA) and protein products, for major research organisms. This now includes curated information for a single sequence of each fully sequenced virus species. While this is a welcome development, it can only deal with complete sequences. An important feature of DPV is the opportunity to access genes (and other features) of multiple sequences quickly and accurately. Thus, for example, it is easy to obtain the nucleotide or amino acid sequences of all the available accessions of the coat protein gene of a given virus species or for a group of viruses. To increase its usefulness further, DPVweb also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA (ssDNA) genome. Sponsors: This site is supported by the Association of Applied Biologists and the Zhejiang Academy of Agricultural Sciences, Hangzhou, People''s Republic of China.
Proper citation: Descriptions of Plant Viruses (RRID:SCR_006656) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.