Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www3.isrl.uiuc.edu/~TeleNature/bibe/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 15, 2013. A facility to help novices and experts find information about plants and animals in digital collections. The objectives of the Project are to facilitate access to online flora and fauna by both novices and experts through enhanced indexing, searching, and visualization techniques. Specific search facility and content will be added to help users with different levels of domain knowledge identify species based on the augmentation of professionally developed taxonomic treatments or species descriptions. This is a novel use of taxonomic descriptions.
Proper citation: Biological Information Browsing Environment (RRID:SCR_008170) Copy
A database which provides ribosome related data services to the scientific community, including online data analysis, rRNA derived phylogenetic trees, and aligned and annotated rRNA sequences. It specifically contains information on quality-controlled, aligned and annotated bacterial and archaean 16S rRNA sequences, fungal 28S rRNA sequences, and a suite of analysis tools for the scientific community. Most of the RDP tools are now available as open source packages for users to incorporate in their local workflow.
Proper citation: Ribosomal Database Project (RRID:SCR_006633) Copy
http://ligand-expo.rutgers.edu/
An integrated data resource for finding chemical and structural information about small molecules bound to proteins and nucleic acids within the structure entries of the Protein Data Bank. Tools are provided to search the PDB dictionary for chemical components, to identify structure entries containing particular small molecules, and to download the 3D structures of the small molecule components in the PDB entry. A sketch tool is also provided for building new chemical definitions from reported PDB chemical components.
Proper citation: Ligand Expo (RRID:SCR_006636) Copy
http://www.genes2cognition.org/
A neuroscience research program that studies genes, the brain and behavior in an integrated manner, established to elucidate the molecular mechanisms of learning and memory, and shed light on the pathogenesis of disorders of cognition. Central to G2C investigations is the NMDA receptor complex (NRC/MASC), that is found at the synapses in the central nervous system which constitute the functional connections between neurons. Changes in the receptor and associated components are thought to be in a large part responsible for the phenomenon of synaptic plasticity, that may underlie learning and memory. G2C is addressing the function of synapse proteins using large scale approaches combining genomics, proteomics and genetic methods with electrophysiological and behavioral studies. This is incorporated with computational models of the organization of molecular networks at the synapse. These combined approaches provide a powerful and unique opportunity to understand the mechanisms of disease genes in behavior and brain pathology as well as provide fundamental insights into the complexity of the human brain. Additionally, Genes to Cognition makes available its biological resources, including gene-targeting vectors, ES cell lines, antibodies, and transgenic mice, generated for its phenotyping pipeline. The resources are freely-available to interested researchers.
Proper citation: Genes to Cognition: Neuroscience Research Programme (RRID:SCR_007121) Copy
http://cagt.bu.edu/page/PRECISE_about
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 12,2023. Database of interactions between amino acid residues of enzyme and its ligands. Provides summary of interactions between amino acid residues of enzyme and its various ligands including substrate and transition state analogues, cofactors, inhibitors, and products., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: PRECISE (RRID:SCR_007874) Copy
The Oomycete Molecular Genetics Research Collaboration Network (OMGN) is a network for research collaboration for investigators interested in oomycete molecular genetics and genomics. The goals of the OMGN is to facilitate the integration of these investigators into the community and to further strengthen the cooperative culture of this community. A particular emphasis is placed on training and integrating junior faculty and faculty from institutions under-represented in the U.S. research infrastructure. Because of their economic impact as plant pathogens, molecular, genetic and genomics studies are well advanced in many oomycete species. These organisms have served as lead species for the entire Stramenopiles lineage, a major radiation of crown eukaryotes, distinct from plants, animals and fungi. The oomycete molecular genetics community has a strong culture of collaboration and communication, and sharing of techniques and resources. With the recent blossoming of genetic and genomic tools for oomycetes, many new investigators, from a variety of backgrounds, have become interested in oomycete molecular genetics and genomics. The proposed network is open to all researchers with an interest in oomycete molecular genetics and genomics, either at an experimental or a computational level. Investigators new to the field are always welcome, especially those interested in saprophytes and animal pathogens. Goals of OMGN # Provide training to o��mycete molecular genetics researchers, especially those from smaller institutions, in the use of bioinformatics and genomics resources. # Promote the entry, participation and training of new investigators into the field of o��mycete genomics, particularly junior faculty and faculty from institutions under-represented in the U.S. research infrastructure. # Promote communication and collaboration, and minimize duplication of effort, within the worldwide o��mycete genomics community. # Support an O��mycete Genomics Resources Center to maintain and distribute training and research materials produced by community genomics projects. The network''s activities have been supported by two grants from the NSF Research Collaboration Networks in Biology program.
Proper citation: OMGN (RRID:SCR_005781) Copy
An integrated cross-species anatomy ontology representing a variety of entities classified according to traditional anatomical criteria such as structure, function and developmental lineage. The ontology includes comprehensive relationships to taxon-specific anatomical ontologies, allowing integration of functional, phenotype and expression data. Uberon consists of over 10000 classes (March 2014) representing structures that are shared across a variety of metazoans. The majority of these classes are chordate specific, and there is large bias towards model organisms and human.
Proper citation: UBERON (RRID:SCR_010668) Copy
Publicly accessible 3D data repository where subject experts, educators, and general public can find, view, interact with, and download 3D and 2D media representing physical objects important to the world’s natural history, cultural heritage, and scientific collections. Media data are contributed by a community that includes museums, institutions, researchers, scholars, and other subject experts who use MorphoSource to archive data, share findings, and increase scholarly impact. Contributed media represent both biological objects such as fossils and representatives of living species, as well as artifacts and objects created by humans that are critical to our shared cultural heritage.
Proper citation: MorphoSource (RRID:SCR_025654) Copy
Map database allows to record your geological observations and uses your location to provide spatially informed suggestions for nearby geologic units, time intervals, and fossils.
Proper citation: rockd (RRID:SCR_024431) Copy
Open access knowledge base for microbial natural products discovery. Database of microbially derived natural product structures. Provides coverage of bacterial and fungal natural products to visualize chemical diversity. Includes compounds and contains referenced data for structure, compound names, source organisms, isolation references, total syntheses, and instances of structural reassignment. Interactive web portal permits searching by structure, substructure, and physical properties. Provides mechanisms for visualizing natural products chemical space and dashboards for displaying author and discovery timeline data. Atlas has been developed under FAIR principles.
Proper citation: Natural Products Atlas (RRID:SCR_025107) Copy
https://brainlife.io/docs/using_ezBIDS/
Web-based BIDS conversion tool to convert neuroimaging data and associated metadata to BIDS standard. Guided standardization of neuroimaging data interoperable with major data archives and platforms.
Proper citation: ezBIDS (RRID:SCR_025563) Copy
Computing resources structural biologists need to discover the shapes of the molecules of life, it provides access to web-enabled structural biology applications, data sharing facilities, biological data sets, and other resources valuable to the computational structural biology community. Consortium includes X-ray crystallography, NMR and electron microscopy laboratories worldwide.SBGrid Service Center is located at Harvard Medical School.SBGrid's NIH-compliant Service Center supports SBGrid operations and provides members with access to Software Maintenance, Computing Access, and Training. Consortium benefits include: * remote management of your customized collection of structural biology applications on Linux and Mac workstations; * access to commercial applications exclusively licensed to members of the Consortium, such as NMRPipe, Schrodinger Suite (limited tokens) and the Incentive version of Pymol; remote management of supporting scientific applications (e.g., bioinformatics, computational chemistry and utilities); * access to SBGrid seminars and events; and * advice about hardware configurations, operating system installations and high performance computing. Membership is restricted to academic/non-profit research laboratories that use X-ray crystallography, 2D crystallography, NMR, EM, tomography and other experimental structural biology technologies in their research. Most new members are fully integrated with SBGrid within 2 weeks of the initial application.
Proper citation: Structural Biology Grid (RRID:SCR_003511) Copy
http://mimi.ncibi.org/MimiWeb/main-page.jsp
MiMi Web gives you an easy to use interface to a rich NCIBI data repository for conducting your systems biology analyses. This repository includes the MiMI database, PubMed resources updated nightly, and text mined from biomedical research literature. The MiMI database comprehensively includes protein interaction information that has been integrated and merged from diverse protein interaction databases and other biological sources. With MiMI, you get one point of entry for querying, exploring, and analyzing all these data. MiMI provides access to the knowledge and data merged and integrated from numerous protein interactions databases and augments this information from many other biological sources. MiMI merges data from these sources with deep integration into its single database with one point of entry for querying, exploring, and analyzing all these data. MiMI allows you to query all data, whether corroborative or contradictory, and specify which sources to utilize. MiMI displays results of your queries in easy-to-browse interfaces and provides you with workspaces to explore and analyze the results. Among these workspaces is an interactive network of protein-protein interactions displayed in Cytoscape and accessed through MiMI via a MiMI Cytoscape plug-in. MiMI gives you access to more information than you can get from any one protein interaction source such as: * Vetted data on genes, attributes, interactions, literature citations, compounds, and annotated text extracts through natural language processing (NLP) * Linkouts to integrated NCIBI tools to: analyze overrepresented MeSH terms for genes of interest, read additional NLP-mined text passages, and explore interactive graphics of networks of interactions * Linkouts to PubMed and NCIBI's MiSearch interface to PubMed for better relevance rankings * Querying by keywords, genes, lists or interactions * Provenance tracking * Quick views of missing information across databases. Data Sources include: BIND, BioGRID, CCSB at Harvard, cPath, DIP, GO (Gene Ontology), HPRD, IntAct, InterPro, IPI, KEGG, Max Delbreuck Center, MiBLAST, NCBI Gene, Organelle DB, OrthoMCL DB, PFam, ProtoNet, PubMed, PubMed NLP Mining, Reactome, MINT, and Finley Lab. The data integration service is supplied under the conditions of the original data sources and the specific terms of use for MiMI. Access to this website is provided free of charge. The MiMI data is queryable through a web services api. The MiMI data is available in PSI-MITAB Format. These files represent a subset of the data available in MiMI. Only UniProt and RefSeq identifiers are included for each interactor, pathways and metabolomics data is not included, and provenance is not included for each interaction. If you need access to the full MiMI dataset please send an email to mimi-help (at) umich.edu.
Proper citation: Michigan Molecular Interactions (RRID:SCR_003521) Copy
http://www.isi.edu/integration/karma/
An information integration software tool that enables users to integrate data from a variety of data sources including databases, spreadsheets, delimited text files, XML, JSON, KML and Web APIs. Users integrate information by modeling it according to an ontology of their choice using a graphical user interface that automates much of the process. Karma learns to recognize the mapping of data to ontology classes and then uses the ontology to propose a model that ties together these classes. Users then interact with the system to adjust the automatically generated model. During this process, users can transform the data as needed to normalize data expressed in different formats and to restructure it. Once the model is complete, users can publish the integrated data as RDF or store it in a database.
Proper citation: Karma (RRID:SCR_003732) Copy
A set of software tools created to rapidly build scientific data-management applications. These applications will enhance the process of data annotation, analysis, and web publication. The system provides a set of easy-to-use software tools for data sharing by the scientific community. It enables researchers to build their own custom-designed data management systems. The problem of scientific data management rests on several challenges. These include flexible data storage, a way to share the stored data, tools to curate the data, and history of the data to show provenance. The Yogo Framework gives you the ability to build scientific data management applications that address all of these challenges. The Yogo software is being developed as part of the NeuroSys project. All tools created as part of the Yogo Data Management Framework are open source and released under an OSI approved license.
Proper citation: Yogo Data Management System (RRID:SCR_004239) Copy
http://openconnectomeproject.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 9, 2023. Connectomes repository to facilitate the analysis of connectome data by providing a unified front for connectomics research. With a focus on Electron Microscopy (EM) data and various forms of Magnetic Resonance (MR) data, the project aims to make state-of-the-art neuroscience open to anybody with computer access, regardless of knowledge, training, background, etc. Open science means open to view, play, analyze, contribute, anything. Access to high resolution neuroanatomical images that can be used to explore connectomes and programmatic access to this data for human and machine annotation are provided, with a long-term goal of reconstructing the neural circuits comprising an entire brain. This project aims to bring the most state-of-the-art scientific data in the world to the hands of anybody with internet access, so collectively, we can begin to unravel connectomes. Services: * Data Hosting - Their Bruster (brain-cluster) is large enough to store nearly any modern connectome data set. Contact them to make your data available to others for any purpose, including gaining access to state-of-the-art analysis and machine vision pipelines. * Web Viewing - Collaborative Annotation Toolkit for Massive Amounts of Image Data (CATMAID) is designed to navigate, share and collaboratively annotate massive image data sets of biological specimens. The interface is inspired by Google Maps, enhanced to allow the exploration of 3D image data. View the fork of the code or go directly to view the data. * Volume Cutout Service - RESTful API that enables you to select any arbitrary volume of the 3d database (3ddb), and receive a link to download an HDF5 file (for matlab, C, C++, or C#) or a NumPy pickle (for python). Use some other programming language? Just let them know. * Annotation Database - Spatially co-registered volumetric annotations are compactly stored for efficient queries such as: find all synapses, or which neurons synapse onto this one. Create your own annotations or browse others. *Sample Downloads - In addition to being able to select arbitrary downloads from the datasets, they have also collected a few choice volumes of interest. * Volume Viewer - A web and GPU enabled stand-alone app for viewing volumes at arbitrary cutting planes and zoom levels. The code and program can be downloaded. * Machine Vision Pipeline - They are building a machine vision pipeline that pulls volumes from the 3ddb and outputs neural circuits. - a work in progress. As soon as we have a stable version, it will be released. * Mr. Cap - The Magnetic Resonance Connectome Automated Pipeline (Mr. Cap) is built on JIST/MIPAV for high-throughput estimation of connectomes from diffusion and structural imaging data. * Graph Invariant Computation - Upload your graphs or streamlines, and download some invariants. * iPad App - WholeSlide is an iPad app that accesses utilizes our open data and API to serve images on the go.
Proper citation: Open Connectome Project (RRID:SCR_004232) Copy
A dynamic archive of information on digital morphology and high-resolution X-ray computed tomography of biological specimens serving imagery for more than 750 specimens contributed by almost 150 collaborating researchers from the world''s premiere natural history museums and universities. Browse through the site and see spectacular imagery and animations and details on the morphology of many representatives of the Earth''s biota. Digital Morphology, part of the National Science Foundation Digital Libraries Initiative, develops and serves unique 2D and 3D visualizations of the internal and external structure of living and extinct vertebrates, and a growing number of ''invertebrates.'' The Digital Morphology library contains nearly a terabyte of imagery of natural history specimens that are important to education and central to ongoing cutting-edge research efforts. Digital Morphology visualizations are now in use in classrooms and research labs around the world and can be seen in a growing number of museum exhibition halls. The Digital Morphology site currently presents: * QuickTime animations of complete stacks of serial CT sections * Animated 3D volumetric movies of complete specimens * Stereolithography (STL) files of 3D objects that can be viewed interactively and rapidly prototyped into scalable physical 3D objects that can be handled and studied as if they were the original specimens * Informative introductions to the scanned organisms, often written by world authorities * Pertinent bibliographic information on each specimen * Useful links * A course resource for our ''Digital Methods for Paleontology'' course, in which students learn how to generate all of the types of imagery displayed on the Digital Morphology site
Proper citation: DigiMorph (RRID:SCR_004416) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. The Catalog of Fishes is the authoritative reference for taxonomic fish names, featuring a searchable on-line database. The Catalog of Fishes covers more than 53,000 species and subspecies, over 10,000 genera and subgenera, and includes in excess of 16,000 bibliographic references. The Catalog of Fishes consists of three hardbound volumes of 900-1000 pages each, along with a CD-ROM. The online database is updated about every 8 weeks and is now about twice the size of the published version. It is one of the oldest and most complete databases for any large animal group. References are over 30,000. Valid species are over 30,000. This work is an essential reference for taxonomists, scientific historians, and for any specialist dealing with fishes. Entries for species, for example, consist of species/subspecies name, genus, author, date, publication, pages, figures, type locality, location of type specimen(s), current status (with references), family/subfamily, and important publication, taxonomic, or nomenclatural notes. Nearly all original descriptions have been examined, and much effort has gone into determining the location of type specimens. The Genera are updated from Eschmeyer''s 1990 Genera of Recent Fishes. Both genera and species are listed in a classification using recent taxonomic schemes. Also included are a lengthy list of museum acronyms, an interpretation of the International Code of Zoological Nomenclature, and Opinions of the International Commission involving fishes.
Proper citation: Catalog of Fishes (RRID:SCR_004408) Copy
Resource for the storage, retrieval and annotation of plant ESTs, with a focus on comparative genomics. PGN comprises an analysis pipeline and a website, and presently contains mainly data from the Floral Genome Project. However, it accepts submission from other sources. All data in PGN is directly derived from chromatograms and all original and intermediate data are stored in the database. The current datasets on PGN come from the floral genome project and includes the following species: Acorus americanus, Amborella trichopoda, Asparagus officinalis, Cucumis sativus, Eschscholzia californica, Eschscholzia californica, Illicium parviflorum, Ipomopsis aggregata, Liriodendron tulipifera, Mesembryanthemum crystallinum, Mimulus guttatus, Nuphar advena, Papaver somniferum, Persea americana, Prymnesium parvum, Ribes americanum, Saruma henryi, Stenogyne rugosa, Vaccinium corymbosa, Welwitschia mirabilis, Yucca filamentosa, Zamia fischeri. For functional annotation, blast is used to compare find the best match of each unigene sequence to in the Genbank NR database, and the in complete coding sequences from Arabidopsis. These annotations are stored in the database and serve as the primary source of annotation. The annotation framework will be extended to Gene Ontology annotations in the future.
Proper citation: PGN (RRID:SCR_004559) Copy
http://www.openarchives.org/ore/
Initiative which defines standards for the description and exchange of aggregations of Web resources. The intent of the effort is to develop standards that generalize across all web-based information including the increasing popular social networks of web 2.0. The goal of these standards is to expose the rich content in these aggregations (sometimes called compound digital objects, they may combine distributed resources with multiple media types including text, images, data, and video) to applications that support authoring, deposit, exchange, visualization, reuse, and preservation. The specific aim of the ORE effort is to promote (through creation or endorsement) effective and consistent mechanisms which: facilitate discovery of compound digital objects; reference (or link to) these objects (as well as parts thereof); obtain a variety of disseminations of these objects; aggregate and disaggregate objects; and enable processing of objects by automated agents.
Proper citation: Open Archives Initiative - Object Reuse and Exchange Initiative (RRID:SCR_006982) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.