Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 3 showing 41 ~ 57 out of 57 results
Snippet view Table view Download 57 Result(s)
Click the to add this resource to a Collection

http://www.plantgdb.org/AtGDB/

Database providing a sequence-centered genome view for Arabidopsis thaliana, with a narrow focus on gene structure annotation. The current genome assembly displayed at AtGDB is version TAIR9. Annotated gene models are TAIR10. They have mapped the complete set of 176,915 publicly available Arabidopsis EST sequences onto the Arabidopsis genome using GeneSeqer, a spliced alignment program incorporating sequence similarity and splice site scoring. About 96% of the available ESTs could be properly aligned with a genomic locus, with the remaining ESTs deriving from organelle genomes and non-Arabidopsis sources or displaying insufficient sequence quality for alignment. The mapping provides verified sets of EST clusters for evaluation of EST clustering programs. Analysis of the spliced alignments suggests corrections to current gene structure annotation and provides examples of alternative and non-canonical pre-mRNA splicing.

Proper citation: Arabidopsis thaliana Genome Database (RRID:SCR_001901) Copy   


  • RRID:SCR_002067

    This resource has 1+ mentions.

http://biodev.extra.cea.fr/interoporc/

Automatic prediction tool to infer protein-protein interaction networks, it is applicable for lots of species using orthology and known interactions. The interoPORC method is based on the interolog concept and combines source interaction datasets from public databases as well as clusters of orthologous proteins (PORC) available on Integr8. Users can use this page to ask InteroPorc for all species present in Integr8. Some results are already computed and users can run InteroPorc to investigate any other species. Currently, the following databases are processed and merged (with datetime of the last available public release for each database used): IntAct, MINT, DIP, and Integr8.

Proper citation: InteroPorc (RRID:SCR_002067) Copy   


http://www.megabionet.org/atpid/webfile/

Centralized platform to depict and integrate the information pertaining to protein-protein interaction networks, domain architecture, ortholog information and GO annotation in the Arabidopsis thaliana proteome. The Protein-protein interaction pairs are predicted by integrating several methods with the Naive Baysian Classifier. All other related information curated is manually extracted from published literature and other resources from some expert biologists. You are welcomed to upload your PPI or subcellular localization information or report data errors. Arabidopsis proteins is annotated with information (e.g. functional annotation, subcellular localization, tissue-specific expression, phosphorylation information, SNP phenotype and mutant phenotype, etc.) and interaction qualifications (e.g. transcriptional regulation, complex assembly, functional collaboration, etc.) via further literature text mining and integration of other resources. Meanwhile, the related information is vividly displayed to users through a comprehensive and newly developed display and analytical tools. The system allows the construction of tissue-specific interaction networks with display of canonical pathways.

Proper citation: Arabidopsis thaliana Protein Interactome Database (RRID:SCR_001896) Copy   


http://ahd.cbi.pku.edu.cn

Database providing a systematic and comprehensive view of morphological phenotypes regulated by plant hormones, as well as regulatory genes participating in numerous plant hormone responses. By integrating the data from mutant studies, transgenic analysis and gene ontology annotation, genes related to the stimulus of eight plant hormones were identified, including abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid and salicylic acid. Another pronounced characteristics of this database is that a phenotype ontology was developed to precisely describe all kinds of morphological processes regulated by plant hormones with standardized vocabularies. To increase the coverage of phytohormone related genes, the database has been updated from AHD to AHD2.0 adding and integrating several pronounced features: (1) added 291 newly published Arabidopsis hormone related genes as well as corrected information (e.g. the arguable ABA receptors) based on the recent 2-year literature; (2) integrated orthologues of sequenced plants in OrthoMCLDB into each gene in the database; (3) integrated predicted miRNA splicing site in each gene in the database; (4) provided genetic relationship of these phytohormone related genes mining from literature, which represents the first effort to construct a relatively comprehensive and complex network of hormone related genes as shown in the home page of our database; (5) In convenience to in-time bioinformatics analysis, they also provided links to a powerful online analysis platform Weblab that they have recently developed, which will allow users to readily perform various sequence analysis with these phytohormone related genes retrieved from AHD2.0; (6) provided links to other protein databases as well as more expression profiling information that would facilitate users for a more systematic analysis related to phytohormone research. Please help to improve the database with your contributions.

Proper citation: Arabidopsis Hormone Database (RRID:SCR_001792) Copy   


  • RRID:SCR_001368

    This resource has 50+ mentions.

http://mitominer.mrc-mbu.cam.ac.uk/

A database of mitochondrial proteomics data. It includes two sets of proteins: the MitoMiner Reference Set, which has 10477 proteins from 12 species; and MitoCarta, which has 2909 proteins from mouse and human mitochondrial proteins. MitoMiner provides annotation from the Gene Ontology (GO) and UniProt databases. This reference set contains all proteins that are annotated by either of these resources as mitochondrial in any of the species included in MitoMiner. MitoMiner data via is available via Application Programming Interface (API). The client libraries are provided in Perl, Python, Ruby and Java.

Proper citation: MitoMiner (RRID:SCR_001368) Copy   


  • RRID:SCR_002097

    This resource has 10+ mentions.

http://spliceosomedb.ucsc.edu/

A database of proteins and RNAs that have been identified in various purified splicing complexes. Various names, orthologs and gene identifiers of spliceosome proteins have been cataloged to navigate the complex nomenclature of spliceosome proteins. Links to gene and protein records are also provided for the spliceosome components in other databases. To navigate spliceosome assembly dynamics, tools were created to compare the association of spliceosome proteins with complexes that form at specific stages of spliceosome assembly based on a compendium of mass spectrometry experiments that identified proteins in purified splicing complexes.

Proper citation: Spliceosome Database (RRID:SCR_002097) Copy   


  • RRID:SCR_002807

    This resource has 10+ mentions.

http://www.germonline.org/

Cross-species microarray expression database focusing on high-throughput expression data relevant for germline development, meiosis and gametogenesis as well as the mitotic cell cycle. The database contains a unique combination of information: 1) High-throughput expression data obtained with whole-genome high-density oligonucleotide microarrays (GeneChips). 2) Sample annotation (mouse over the sample name and click on it) using the Multiomics Information Management and Annotation System (MIMAS 3.0). 3) In vivo protein-DNA binding data and protein-protein interaction data (available for selected species). 4) Genome annotation information from Ensembl version 50. 5) Orthologs are identified using data from Ensembl and OMA and linked to each other via a section in the report pages. The portal provides access to the Saccharomyces Genomics Viewer (SGV) which facilitates online interpretation of complex data from experiments with high-density oligonucleotide tiling microarrays that cover the entire yeast genome. The database displays only expression data obtained with high-density oligonucleotide microarrays (GeneChips)., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 15,2026.

Proper citation: GermOnline (RRID:SCR_002807) Copy   


  • RRID:SCR_002924

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/homologene

Automated system for constructing putative homology groups from complete gene sets of wide range of eukaryotic species. Databse that provides system for automatic detection of homologs, including paralogs and orthologs, among annotated genes of sequenced eukaryotic genomes. HomoloGene processing uses proteins from input organisms to compare and sequence homologs, mapping back to corresponding DNA sequences. Reports include homology and phenotype information drawn from Online Mendelian Inheritance in Man, Mouse Genome Informatics, Zebrafish Information Network, Saccharomyces Genome Database and FlyBase.

Proper citation: HomoloGene (RRID:SCR_002924) Copy   


http://pgsb.helmholtz-muenchen.de/plant/athal/index.jsp

Repository for genome sequence data in the European Scientists Sequencing Arabidopsis (ESSA) project, part of the Arabidopsis Genome Initiative. It is moving towards becoming an integrated biological knowledge resource by integrating diverse data, tools, query and visualization capabilities. The aim is to create a comprehensive resource for Arabidopsis as a model that can then be used to transfer knowledge onto sequences from other species, including crop plants.

Proper citation: MIPS Arabidopsis thaliana Database (RRID:SCR_003088) Copy   


  • RRID:SCR_002762

    This resource has 100+ mentions.

http://hint.yulab.org/

A database of high-quality protein-protein interactions in different organisms.

Proper citation: HINT (RRID:SCR_002762) Copy   


http://ppdb.agr.gifu-u.ac.jp/ppdb/cgi-bin/index.cgi

A plant promoter database that provides information on transcription start sites (TSSs), core promoter structure and regulatory element groups (REGs) as putative and comprehensive transcriptional regulatory elements. Microarray data-based predictions have been appended as REG annotations which inform their putative physiological roles.

Proper citation: PPDB: Plant Promoter Database (RRID:SCR_003395) Copy   


http://www.ihop-net.org/UniPub/iHOP/

Information system that provides a network of concurring genes and proteins extends through the scientific literature touching on phenotypes, pathologies and gene function. It provides this network as a natural way of accessing millions of PubMed abstracts. By using genes and proteins as hyperlinks between sentences and abstracts, the information in PubMed can be converted into one navigable resource, bringing all advantages of the internet to scientific literature research. Moreover, this literature network can be superimposed on experimental interaction data (e.g., yeast-two hybrid data from Drosophila melanogaster and Caenorhabditis elegans) to make possible a simultaneous analysis of new and existing knowledge. The network contains half a million sentences and 30,000 different genes from humans, mice, D. melanogaster, C. elegans, zebrafish, Arabidopsis thaliana, yeast and Escherichia coli.

Proper citation: Information Hyperlinked Over Proteins (RRID:SCR_004829) Copy   


  • RRID:SCR_002654

    This resource has 500+ mentions.

http://ccb.jhu.edu/software/glimmerhmm/

A gene finder based on a Generalized Hidden Markov Model (GHMM). Although the gene finder conforms to the overall mathematical framework of a GHMM, additionally it incorporates splice site models adapted from the GeneSplicer program and a decision tree adapted from GlimmerM. It also utilizes Interpolated Markov Models for the coding and noncoding models . Currently, GlimmerHMM's GHMM structure includes introns of each phase, intergenic regions, and four types of exons (initial, internal, final, and single).

Proper citation: GlimmerHMM (RRID:SCR_002654) Copy   


  • RRID:SCR_011965

    This resource has 10+ mentions.

http://gpcr.biocomp.unibo.it/bacello/

A predictor for the subcellular localization of proteins in eukaryotes that is based on a decision tree of several support vector machines (SVMs). It classifies up to four localizations for Fungi and Metazoan proteins and five localizations for Plant ones. BaCelLo's predictions are balanced among different classes and all the localizations are considered as equiprobable.

Proper citation: BaCelLo (RRID:SCR_011965) Copy   


  • RRID:SCR_006343

    This resource has 1+ mentions.

http://www.btool.org/ADGO2

A web-based tool that provides composite interpretations for microarray data comparing two sample groups as well as lists of genes from diverse sources of biological information. It provides multiple gene set analysis methods for microarray inputs as well as enrichment analyses for lists of genes. It screens redundant composite annotations when generating and prioritizing them. It also incorporates union and subtracted sets as well as intersection sets. Users can upload their gene sets (e.g. predicted miRNA targets) to generate and analyze new composite sets.

Proper citation: ADGO (RRID:SCR_006343) Copy   


  • RRID:SCR_006433

    This resource has 500+ mentions.

http://biogps.org/

An extensible and customizable gene annotation portal that emphasizes community extensibility and user customizability. It is a complete resource for learning about gene and protein function. Community extensibility reflects a belief that any BioGPS user should be able to add new content to BioGPS using the simple plugin interface, completely independently of the core developer team. User customizability recognizes that not all users are interested in the same set of gene annotation data, so the gene report layouts enable each user to define the information that is most relevant to them. Currently, BioGPS supports eight species: Human (Homo sapiens), Mouse (Mus musculus), Rat (Rattus norvegicus), Fruitfly (Drosophila melanogaster), Nematode (Caenorhabditis elegans), Zebrafish (Danio rerio), Thale-cress (Arabidopsis thaliana), Frog (Xenopus tropicalis), and Pig (Sus scrofa). BioGPS presents data in an ortholog-centric format, which allows users to display mouse plugins next to human ones. Our data for defining orthologs comes from NCBI's HomoloGene database.

Proper citation: BioGPS: The Gene Portal Hub (RRID:SCR_006433) Copy   


http://datf.cbi.pku.edu.cn/

Database that collects all arabidopsis transcription factors (totally 1922 Loci; 2290 Gene Models) and classifies them into 64 families. It uses not only locus (gene), but also gene model (transcript, protein) and the detail information is for each gene model not for locus. It adds multiple alignment of the DNA-binding domain of each family, Neighbor-Joining phylogenetic tree of each family, the GO annotation, homolog with the Database of Rice Transcription Factors (DRTF). It also keeps old information items such as the unique cloned and sequenced information of about 1200 transcription factors, protein domains, 3D structure information with BLAST hits against PDB, predicted Nuclear Location Signals, UniGene information, as well as links to literature reference.

Proper citation: Database of Arabidopsis Transcription Factors (RRID:SCR_007101) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X