Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://bioinformatics.oxfordjournals.org/content/early/2012/05/10/bioinformatics.bts271.full.pdf
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on March 7,2024. Software for somatic single nucleotide variant (SNV) and small indel detection from sequencing data of matched tumor-normal samples. The method employs a novel Bayesian approach which represents continuous allele frequencies for both tumor and normal samples, whilst leveraging the expected genotype structure of the normal. This is achieved by representing the normal sample as a mixture of germline variation with noise, and representing the tumor sample as a mixture of the normal sample with somatic variation. A natural consequence of the model structure is that sensitivity can be maintained at high tumor impurity without requiring purity estimates. The method has superior accuracy and sensitivity on impure samples compared to approaches based on either diploid genotype likelihoods or general allele-frequency tests.
Proper citation: Strelka (RRID:SCR_005109) Copy
https://github.com/ding-lab/msisensor
A C++ software program for automatically detecting somatic and germline variants at microsatellite regions. It computes length distributions of microsatellites per site in paired tumor and normal sequence data, subsequently using these to statistically compare observed distributions in both samples.
Proper citation: MSIsensor (RRID:SCR_006418) Copy
http://www.capitalbiosciences.com/
Biological products including Cell Immortalization Products, Clinically Defined Human Tissue, cDNA ORF Clones, Premade Adenoviruses, Purified Proteins, Viral Expression Systems and others as well as services like Custom Recombinant Adenovirus Production, Custom Recombinant Lentivirus Production, Protein Detection and Quantification and Stable Cell Line Production for academic and governmental research institutes, pharmaceutical and biotechnology industry. Capital Biosciences offers most types of human tissues, normal and diseased, with extensive clinical history and follow up information. Standard specimen format: Snap-frozen(flash-frozen), Formalin fixed and paraffin embedded (FFPE) tissues, Blood and blood products, Bone marrow, Total RNA, Genomic DNA, Total Proteins, Primary cell cultures, Viable frozen tissue. Tumor tissue samples include: Bladder cancer, Glioblastoma, Medulloblastoma, Breast Carcinoma, Cervical Cancer, Colorectal Cancer, Endometrial Cancer, Esophageal Cancer, Head and Neck (H&N) Carcinoma, Hepatocellular Carcinoma (HCC), Hodgkin's lymphoma, Kidney, Renal Cell Carcinoma, Lung Cancer, Non-Small Cell (NCSLC), Lung Cancer, Small Cell (SCLC), Melanoma, Mesothelioma, non-Hodgkin's Lymphoma, Ovarian Adenocarcinoma, Pancreatic Cancer, Prostate Cancer, Stomach Cancer.
Proper citation: Capital Biosciences (RRID:SCR_004879) Copy
http://gmt.genome.wustl.edu/somatic-sniper/current/
Software program to identify single nucleotide positions that are different between tumor and normal (or, in theory, any two bam files). It takes a tumor bam and a normal bam and compares the two to determine the differences. It outputs a file in a format very similar to Samtools consensus format. It uses the genotype likelihood model of MAQ (as implemented in Samtools) and then calculates the probability that the tumor and normal genotypes are different. This probability is reported as a somatic score. The somatic score is the Phred-scaled probability (between 0 to 255) that the Tumor and Normal genotypes are not different where 0 means there is no probability that the genotypes are different and 255 means there is a probability of 1 ? 10(255/-10) that the genotypes are different between tumor and normal. This is consistent with how the SAM format reports such probabilities. It is currently available as source code via github or as a Debian APT package.
Proper citation: SomaticSniper (RRID:SCR_005108) Copy
Tool for calling indels in Tumor-Normal paired sample mode.
Proper citation: SomaticIndelDetector (RRID:SCR_005107) Copy
http://www.pediatricmri.nih.gov/
Data sets of clinical / behavioral and image data are available for download by qualified researchers from a seven year, multi-site, longitudinal study using magnetic resonance technologies to study brain maturation in healthy, typically-developing infants, children, and adolescents and to correlate brain development with cognitive and behavioral development. The information obtained in this study is expected to provide essential data for understanding the course of normal brain development as a basis for understanding atypical brain development associated with a variety of developmental, neurological, and neuropsychiatric disorders affecting children and adults. This study enrolled over 500 children, ranging from infancy to young adulthood. The goal was to study each participant at least three times over the course of the project at one of six Pediatric Centers across the United States. Brain MR and clinical/behavioral data have been compiled and analyzed at a Data Coordinating Center and Clinical Coordinating Center. Additionally, MR spectroscopy and DTI data are being analyzed. The study was organized around two objectives corresponding to two age ranges at the time of enrollment, each with its own protocols. * Objective 1 enrolled children ages 4 years, 6 months through 18 years (total N = 433). This sample was recruited across the six Pediatric Study Centers using community based sampling to reflect the demographics of the United States in terms of income, race, and ethnicity. The subjects were studied with both imaging and clinical/behavioral measures at two year intervals for three time points. * Objective 2 enrolled newborns, infants, toddlers, and preschoolers from birth through 4 years, 5 months, who were studied three or more times at two Pediatric Study Centers at intervals ranging from three months for the youngest subjects to one year as the children approach the Objective 1 age range. Both imaging and clinical/behavioral measures were collected at each time point. Participant recruitment used community based sampling that included hospital venues (e.g., maternity wards and nurseries, satellite physician offices, and well-child clinics), community organizations (e.g., day-care centers, schools, and churches), and siblings of children participating in other research at the Pediatric Study Centers. At timepoint 1, of those enrolled, 114 children had T1 scans that passed quality control checks. Staged data release plan: The first data release included structural MR images and clinical/behavioral data from the first assessments, Visit 1, for Objective 1. A second data release included structural MRI and clinical/behavioral data from the second visit for Objective 1. A third data release included structural MRI data for both Objective 1 and 2 and all time points, as well as preliminary spectroscopy data. A fourth data release added cortical thickness, gyrification and cortical surface data. Yet to be released are longitudinally registered anatomic MRI data and diffusion tensor data. A collaborative effort among the participating centers and NIH resulted in age-appropriate MR protocols and clinical/behavioral batteries of instruments. A summary of this protocol is available as a Protocol release document. Details of the project, such as study design, rationale, recruitment, instrument battery, MRI acquisition details, and quality controls can be found in the study protocol. Also available are the MRI procedure manual and Clinical/Behavioral procedure manuals for Objective 1 and Objective 2.
Proper citation: NIH MRI Study of Normal Brain Development (RRID:SCR_003394) Copy
http://www.broadinstitute.org/science/programs/genome-biology/computational-rd/somaticcall-manual
Software program that finds single-base differences (substitutions) between sequence data from tumor and matched normal samples. It is designed to be highly stringent, so as to achieve a low false positive rate. It takes as input a BAM file for each sample, and produces as output a list of differences (somatic mutations). Note: This software package is no longer supported and information on this page is provided for archival purposes only.
Proper citation: SomaticCall (RRID:SCR_001196) Copy
http://purl.bioontology.org/ontology/MCCL
A comprehensive ontology on primary and established cell lines-both normal and pathologic. It covers around 400 cell lines. This ontology has been built to include the major domains in the field of biology like anatomy, bio-molecules, chemicals and drugs, pathological conditions and genetic variations around the cell lines. An extensive network of relations has been built across these concepts to enable different combinations of queries. The ontology covers all cell lines from major sources like ATCC, DSMZ, ECACC, ICLC etc. and is built in OWL format.
Proper citation: Cell Line Ontology by Mahadevan (RRID:SCR_010281) Copy
http://bodymap.genes.nig.ac.jp/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. A taxonomical and anatomical database of latest cross species animal EST data, clustered by UniGene and inter connected by Inparanoid. Users can search by Unigene, RefSeq, or Entrez Gene ID, or search for Gene Name or Tissue type. Data is also sortable and viewable based on qualities of normal, Neoplastic, or other. The last data import appears to be from 2008
Proper citation: BodyMap-Xs (RRID:SCR_001147) Copy
https://sites.google.com/site/projectbci/
EEG motor activity data sets used for Brain Computer Interface research project in Matlab MAT format. * Dataset 1 - 1D motion: This subject is a 21 year old, right handed male with no known medical conditions. The EEG consists of actual random movements of left and right hand recorded with eyes closed. Each row represents one electrode. The order of the electrodes is FP1 FP2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T3 T4 T5 T6 FZ CZ PZ. The recording was done at 500Hz using Neurofax EEG System which uses a daisy chain montage. The data was exported with a common reference using Eemagine EEG. AC Lines in this country work at 50 Hz. This info is also included in the MAT file. * Dataset 2 - 2D motion: This subject is a 21 year old, right handed male with no known medical conditions. The EEG consists of actual random movements of left and right hand recorded with eyes closed. Each row represents one electrode. The order of the electrodes is FP1 FP2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T3 T4 T5 T6 FZ CZ PZ. The recording was done at 500Hz using Neurofax EEG System which uses a daisy chain montage. The data was exported with a common reference using Eemagine EEG. AC Lines in this country work at 50 Hz. This data consists of the following movements # Three trials left hand forward movement # Three trials left hand backward movement # Three trials left hand forward movement # Three trials left hand forward movement # 1 trial imagined left hand forward movement # 1 trial imagined left hand backward movement # 1 trial imagined right hand forward movement # 1 trial imagined right hand backward movement # 1 trial left leg movement # 1 trial right leg movement
Proper citation: Project BCI - EEG motor activity data set (RRID:SCR_001585) Copy
Data sets resulting from glaucoma research including visual fields, various imaging modalities and other data from both glaucomatous and normal subjects. The Longitudinal Glaucomatous Visual Fields data set contains IOP (Intraocular pressure) measurements and 24-2 Full Threshold visual fields obtained with a Humphrey Field Analyzer (Zeiss). Data of both eyes of 139 patients over a mean period of over 9 years is included, with on average more than 17 fields per eye. Local threshold and total deviation values are included.
Proper citation: Open Rotterdam Glaucoma Imaging Data Sets (RRID:SCR_003540) Copy
http://www.radiologyresearch.org/HippocampusSegmentation.aspx
This dataset contains T1-weighted MR images of 50 subjects, 40 of whom are patients with temporal lobe epilepsy and 10 are nonepileptic subjects. Hippocampus labels are provided for 25 subjects for training. The users may submit their segmentation outcomes for the remaining 25 testing images to get a table of segmentation metrics.
Proper citation: MRI Dataset for Hippocampus Segmentation (RRID:SCR_009597) Copy
A curated knowledge base of the circuitry of the hippocampus of normal adult, or adolescent, rodents at the mesoscopic level of neuronal types. Knowledge concerning dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex is distilled from published evidence and is continuously updated as new information becomes available. Each reported neuronal property is documented with a pointer to, and excerpt from, relevant published evidence, such as citation quotes or illustrations. Please note: This is an alpha-testing site. The content is still being vetted for accuracy and has not yet undergone peer-review. As such, it may contain inaccuracies and should not (yet) be trusted as a scholarly resource. The content does not yet appear uniformly across all combinations of browsers and screen resolutions.
Proper citation: Hippocampome.org (RRID:SCR_009023) Copy
http://srv00.recas.ba.infn.it/ASPicDB/
A database to access reliable annotations of the alternative splicing pattern of human genes, obtained by ASPic algorithm (Castrignano et al. 2006), and to the functional annotation of predicted isoforms. Users may select and extract specific sets of data related to genes, transcripts and introns fulfilling a combination of user-defined criteria. Several tabular and graphical views of the results are presented, providing a comprehensive assessment of the functional implication of alternative splicing in the gene set under investigation. ASPicDB also includes information on tissue-specific splicing patterns of normal and cancer cells, based on available EST data and their library source annotation.
Proper citation: ASPicDB (RRID:SCR_002102) Copy
Collects, stores, and distributes samples of nervous tissue, cerebrospinal fluid, blood, and other tissue from HIV-infected individuals. The NNTC mission is to bolster research on the effects of HIV infection on human brain by providing high-quality, well-characterized tissue samples from patients who died with HIV, and for whom comprehensive neuromedical and neuropsychiatric data were gathered antemortem. Researchers can request tissues from patients who have been characterized by: * degree of neurobehavioral impairment * neurological and other clinical diagnoses * history of drug use * antiretroviral treatments * blood and CSF viral load * neuropathological diagnosis The NNTC encourages external researchers to submit tissue requests for ancillary studies. The Specimen Query Tool is a web-based utility that allows researchers to quickly sort and identify appropriate NNTC specimens to support their research projects. The results generated by the tool reflect the inventory at a previous time. Actual availability at the local repositories may vary as specimens are added or distributed to other investigators.
Proper citation: National NeuroAIDS Tissue Consortium (RRID:SCR_007323) Copy
http://www.nitrc.org/projects/vervet_atlas/
Vervet (Chlorocebus aethiops sabaeus) probabilistic atlas that defines an anatomical space (template) with associated tissue and regional prior probability maps. The atlas was produced from whole head MRI of 10 normal adult animal subjects. The package consists of two atlases. The Biased directory contains the average template and probabilistic atlases for selected tissue classes constructed by registering the training population to one subject. The Unbiased directory contains the atlas constructed using unbiased estimation. The atlas is suitable for use in any segmentation tool using a probabilistic atlas, for example those in Slicer.
Proper citation: Vervet Probabilistic Atlas (RRID:SCR_000426) Copy
Atlas containing 2- and 3-dimensional, anatomical reference slides of the lifespan of the zebrafish to support research and education worldwide. Hematoxylin and eosin histological slides, at various points in the lifespan of the zebrafish, have been scanned at 40x resolution and are available through a virtual slide viewer. 3D models of the organs are reconstructed from plastic tissue sections of embryo and larvae. The size of the zebrafish, which allows sections to fall conveniently within the dimensions of the common 1 x 3 glass slide, makes it possible for this anatomical atlas to become as high resolution as for any vertebrate. That resolution, together with the integration of histology and organ anatomy, will create unique opportunities for comparisons with both smaller and larger model systems that each have their own strengths in research and educational value. The atlas team is working to allow the site to function as a scaffold for collaborative research and educational activity across disciplines and model organisms. The Zebrafish Atlas was created to answer a community call for a comprehensive, web-based, anatomical and pathological atlas of the zebrafish, which has become one of the most widely used vertebrate animal models globally. The experimental strengths of zebrafish as a model system have made it useful for a wide range of investigations addressing the missions of the NIH and NSF. The Zebrafish Atlas provides reference slides for virtual microscopic viewing of the zebrafish using an Internet browser. Virtual slide technology allows the user to choose their own field of view and magnification, and to consult labeled histological sections of zebrafish. We are planning to include a complete set of embryos, larvae, juveniles, and adults from approximately 25 different ages. Future work will also include a variety of comparisons (e.g. normal vs. mutant, normal vs. diseased, multiple stages of development, zebrafish with other organisms, and different types of cancer)., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Zebrafish Atlas (RRID:SCR_006722) Copy
A cloud-based collaborative platform which co-locates data, code, and computing resources for analyzing genome-scale data and seamlessly integrates these services allowing scientists to share and analyze data together. Synapse consists of a web portal integrated with the R/Bioconductor statistical package and will be integrated with additional tools. The web portal is organized around the concept of a Project which is an environment where you can interact, share data, and analysis methods with a specific group of users or broadly across open collaborations. Projects provide an organizational structure to interact with data, code and analyses, and to track data provenance. A project can be created by anyone with a Synapse account and can be shared among all Synapse users or restricted to a specific team. Public data projects include the Synapse Commons Repository (SCR) (syn150935) and the metaGenomics project (syn275039). The SCR provides access to raw data and phenotypic information for publicly available genomic data sets, such as GEO and TCGA. The metaGenomics project provides standardized preprocessed data and precomputed analysis of the public SCR data.
Proper citation: Synapse (RRID:SCR_006307) Copy
http://caprica.genetics.kcl.ac.uk/BRAINEAC/
Database for the UK Brain Expression Consortium (UKBEC) dataset that comprises of brains from individuals free of neurodegenerative disorders. The aim of Braineac is to release to the scientific community a valid instrument to investigate the genes and SNPs associated with neurological disorders.
Proper citation: Braineac (RRID:SCR_015888) Copy
http://www.rrcancer.ca/en/publique/accueil
An infrastructure to allow Quebec researchers to have at their disposal tumor banks and the services that support large scale research in genomics and proteomics. The database and the tissue bank of the research network was created to allow rapid access to biological samples and their clinical data. It is spread out over many hospital institutions (in Montreal, Quebec and Sherbrooke). The members of the RRCancer-BTD supply normal, benign and malignant samples from routine surgeries and blood tests. Blood and tissue samples are collected by the provincial biobanks on a regular basis and are coded, classified and stored. The samples can be supplied to a researcher either fresh or frozen or blocks of paraffin or on slices. The sharing of information and biological material is managed according to ethical rules and contributes to increasing the value of research in Quebec. The network has mobilized a significant number of researchers in the area of cancer that unite their efforts to pursue high caliber multidisciplinary research. They are a group of researchers from many different Qu��bec Universities all working in the branch of cancer research. They are located in four hospital centers in Quebec, namely the University of Montreal Hospital Centre (CHUM), the University of Quebec Hospital Centre (CHUQ), the University of Sherbrooke Hospital Centre (CHUS) and the McGill University Hospital Centre (CUSM), as well as in the affiliated research and university centers (Sacr��-Coeur, Maisonneuve-Rosemont and the Montreal Jewish Hospital). The collaborative efforts created and maintained in this network have allowed transfer of knowledge and the sharing of cutting edge technologies. RRCancer favors multidisciplinary cancer research in both fundamental and clinical scopes. The network is based on the desire researchers to work together to prevent cancer and improve therapeutic strategies, all the while continuing the very important task of raining new specialists and graduate students.
Proper citation: Cancer Research Network of the FRSQ (RRID:SCR_004225) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.