Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://www.ebi.ac.uk/intact/complex/#annotations:fIzBXhJPEeej78Pl6R0ScA
Database and encyclopaedic resource of macromolecular complexes found in key model organisms from scientific literature. Data includes protein-only complexes, protein-small molecules, and protein-nucleic acid complexes. The information within the portal is manually curated and available for download.
Proper citation: Complex Portal (RRID:SCR_015038) Copy
https://scienceofbehaviorchange.org/about/
Repository for behavioral science measures that have been validated or are in process of being validated in accordance with SOBC Experimental Medicine Approach.
Proper citation: Science of Behavior Change Research Network (RRID:SCR_017385) Copy
https://www.jax.org/news-and-insights/2013/february/komp2-mice-phenotyping-and-availability
Knockout Mouse Phenotyping Project, JAX information about their contributions to KOMP2 project. Project to generate and phenotype single gene KO mouse strains from KOMP ES cell lines. Strains are phenotyped using protocols in pipeline designed by International Mouse Phenotyping Consortium. There are three NIH-funded phenotyping centers in United States: JAX, BaSH Consortium (Baylor College of Medicine, the Wellcome Trust Sanger Institute and MRC Harwell), and the DTCC Consortium (University of California at Davis, the Toronto Center for Phenogenomics, Children’s Hospital Oakland Research Institute (CHORI) and Charles River ).
Proper citation: KOMP2 (RRID:SCR_017528) Copy
http://www.nesys.uio.no/Atlas3D/
A multi-platform visualization tool which allows import and visualization of 3-D atlas structures in combination with tomographic and histological image data. The tool allows visualization and analysis of the reconstructed atlas framework, surface modeling and rotation of selected structures, user-defined slicing at any chosen angle, and import of data produced by the user for merging with the atlas framework. Tomographic image data in NIfTI (Neuroimaging Informatics Technology Initiative) file format, VRML and PNG files can be imported and visualized within the atlas framework. XYZ coordinate lists are also supported. Atlases that are available with the tool include mouse brain structures (3-D reconstructed from The Mouse Brain in Stereotaxic Coordinates by Paxinos and Franklin (2001)) and rat brain structures (3-D reconstructed from The Rat Brain in Stereotaxic Coordinates by Paxinos and Watson (2005)). Experimental data can be imported in Atlas3D and warped to atlas space, using manual linear registration, with the possibility to scale, rotate, and position the imported data. This facilitates assignment of location and comparative analysis of signal location in tomographic images.
Proper citation: Atlas3D (RRID:SCR_001808) Copy
http://ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 23, 2019.BGMUT was database that provided publicly accessible platform for DNA sequences and curated set of blood mutation information. Data Archive are available at ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive.
Proper citation: Blood Group Antigen Gene Mutation Database (RRID:SCR_002297) Copy
Open access knowledge base for microbial natural products discovery. Database of microbially derived natural product structures. Provides coverage of bacterial and fungal natural products to visualize chemical diversity. Includes compounds and contains referenced data for structure, compound names, source organisms, isolation references, total syntheses, and instances of structural reassignment. Interactive web portal permits searching by structure, substructure, and physical properties. Provides mechanisms for visualizing natural products chemical space and dashboards for displaying author and discovery timeline data. Atlas has been developed under FAIR principles.
Proper citation: Natural Products Atlas (RRID:SCR_025107) Copy
https://services.healthtech.dtu.dk/
Center for Biological Sequence Analysis of the Technical University of Denmark conducts basic research in the field of bioinformatics and systems biology and directs its research primarily towards topics related to the elucidation of the functional aspects of complex biological mechanisms. A large number of computational methods have been produced, which are offered to others via WWW servers. Several data sets are also available. The center also has experimental efforts in gene expression analysis using DNA chips and data generation in relation to the physical and structural properties of DNA. The on-line prediction services at CBS are available as interactive input forms. Most of the servers are also available as stand-alone software packages with the same functionality. In addition, for some servers, programmatic access is provided in the form of SOAP-based Web Services. The center also educates engineering students in biotechnology and systems biology and offers a wide range of courses in bioinformatics, systems biology, human health, microbiology and nutrigenomics.
Proper citation: DTU Center for Biological Sequence Analysis (RRID:SCR_003590) Copy
https://rarediseases.org/organizations/nihoffice-of-rare-disease-research/
Organization which develops and maintains a centralized database on rare disease clinical research supported by the NIH. It also stimulates rare disease research by supporting scientific workshops and symposia, responds to requests for information on highly technical matters and matters of public policy, provides information to the Office of the Director on matters relating to rare diseases and orphan products, and coordinates and serves as a liaison with Federal and non-Federal national and international organizations.
Proper citation: Office of Rare Diseases Research (RRID:SCR_004121) Copy
http://www.essentialtremor.us/
Finding a cure for any neurological disorder begins with the scientific study of the disorder''s causes, processes, and development in the brain. For essential tremor (ET), rigorous study of this kind had not been undertaken until 2003, when the Essential Tremor Centralized Brain Repository (ETCBR) was established at Columbia University. For the past five years, brain tissue from ET donors has been collected, processed and compared alongside age-matched control brains at the ETCBR, and already several significant findings have been made. However, there is still much to learn and a severe shortage of ET brains for scientific study. If you have been diagnosed with essential tremor, donating your brain tissue in the hours immediately after your death is of utmost importance in providing crucial information about what causes ET. Direct analysis of the shape and number of nerve cells and their content will provide medical researchers with the information they need in order to understand this complex illness. By advancing our medical knowledge of ET, the gift of brain tissue is a central piece of the puzzle in the search to develop better treatments and find a cure.
Proper citation: Essential Tremor Centralized Brain Repository (RRID:SCR_004464) Copy
The National Alliance for Medical Image Computing (NA-MIC) is a multi-institutional, interdisciplinary team of computer scientists, software engineers, and medical investigators who develop computational tools for the analysis and visualization of medical image data. The purpose of the Center is to provide the infrastructure and environment for the development of computational algorithms and open-source technologies, and then oversee the training and dissemination of these tools to the medical research community. Electronic resources provided by NA-MIC include software, data, tutorials, presentations, and more.
Proper citation: National Alliance for Medical Image Computing (RRID:SCR_004460) Copy
http://www.ncbi.nlm.nih.gov/biosystems/
Database that provides access to biological systems and their component genes, proteins, and small molecules, as well as literature describing those biosystems and other related data throughout Entrez. A biosystem, or biological system, is a group of molecules that interact directly or indirectly, where the grouping is relevant to the characterization of living matter. BioSystem records list and categorize components, such as the genes, proteins, and small molecules involved in a biological system. The companion FLink tool, in turn, allows you to input a list of proteins, genes, or small molecules and retrieve a ranked list of biosystems. A number of databases provide diagrams showing the components and products of biological pathways along with corresponding annotations and links to literature. This database was developed as a complementary project to (1) serve as a centralized repository of data; (2) connect the biosystem records with associated literature, molecular, and chemical data throughout the Entrez system; and (3) facilitate computation on biosystems data. The NCBI BioSystems Database currently contains records from several source databases: KEGG, BioCyc (including its Tier 1 EcoCyc and MetaCyc databases, and its Tier 2 databases), Reactome, the National Cancer Institute's Pathway Interaction Database, WikiPathways, and Gene Ontology (GO). It includes several types of records such as pathways, structural complexes, and functional sets, and is desiged to accomodate other record types, such as diseases, as data become available. Through these collaborations, the BioSystems database facilitates access to, and provides the ability to compute on, a wide range of biosystems data. If you are interested in depositing data into the BioSystems database, please contact them.
Proper citation: NCBI BioSystems Database (RRID:SCR_004690) Copy
A question answer forum for scientists, focusing on methods in bioinformatics, computational genomics and biological data analysis. They welcome detailed and specific posts, written clearly and simply.
Proper citation: BioStar (RRID:SCR_002580) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, Documented on March 24, 2014. A resource for gene expression studies, storing highly curated MIAME-compliant studies (i.e. experiments) employing a variety of technologies such as filter arrays, 2-channel microarrays, Affymetrix chips, SAGE, MPSS and RT-PCR. Data were available for querying and downloading based on the MGED ontology, publications or genes. Both public and private studies (the latter viewable only by users having appropriate logins and permissions) were available from this website. Specific details on protocols, biomaterials, study designs, etc., are collected through a user-friendly suite of web annotation forms. Software has been developed to generate MAGE-ML documents to enable easy export of studies stored in RAD to any other database accepting data in this format. RAD is part of a more general Genomics Unified Schema (http://gusdb.org), which includes a richly annotated gene index (http://allgenes.org), thus providing a platform that integrates genomic and transcriptomic data from multiple organisms. NOTE: Due to changes in technology and funding, the RAD website is no longer available. RAD as a schema is still very much active and incorporated in the GUS (Genomics Unified Schema) database system used by CBIL (EuPathDB, Beta Cell Genomics) and others. The schema for RAD can be viewed along with the other GUS namespaces through our Schema Browser.
Proper citation: RNA Abundance Database (RRID:SCR_002771) Copy
Project to provide Neuroscience Community with mouse strains that are suitable for tissue and cell-type-specific perturbation of gene function in nervous system. NIH Neuroscience Blueprint has established three centers in the USA for generation of genetically modified mice expressing CRE recombinases in nervous system on the C57BJ/6 genetic background. Mouse lines are generated at Cold Spring Harbor Lab, at Scripps Research Institute, and at Baylor College of Medicine.
Proper citation: CRE Driver Network (RRID:SCR_002720) Copy
http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl
Database of embryonic expression patterns using a high throughput RNA in situ hybridization of the protein-coding genes identified in the Drosophila melanogaster genome with images and controlled vocabulary annotations. At the end of production pipeline gene expression patterns are documented by taking a large number of digital images of individual embryos. The quality and identity of the captured image data are verified by independently derived microarray time-course analysis of gene expression using Affymetrix GeneChip technology. Gene expression patterns are annotated with controlled vocabulary for developmental anatomy of Drosophila embryogenesis. Image, microarray and annotation data are stored in a modified version of Gene Ontology database and the entire dataset is available on the web in browsable and searchable form or MySQL dump can be downloaded. So far, they have examined expression of 7507 genes and documented them with 111184 digital photographs.
Proper citation: Patterns of Gene Expression in Drosophila Embryogenesis (RRID:SCR_002868) Copy
http://www.mybiosoftware.com/population-genetics/332
A tool for SNP Search and downloading with local management. It also offers flanking sequence downloading and automatic SNP filtering. It requires Windows and .NET Framework.
Proper citation: SNPHunter (RRID:SCR_002968) Copy
Data archive of more than 500,000 files of research in the social sciences, hosting 16 specialized collections of data in education, aging, criminal justice, substance abuse, terrorism, and other fields. ICPSR comprises a consortium of about 700 academic institutions and research organizations providing training in data access, curation, and methods of analysis for the social science research community. ICPSR welcomes and encourages deposits of digital data. ICPSR's educational activities include the Summer Program in Quantitative Methods of Social Research external link, a comprehensive curriculum of intensive courses in research design, statistics, data analysis, and social methodology. ICPSR also leads several initiatives that encourage use of data in teaching, particularly for undergraduate instruction. ICPSR-sponsored research focuses on the emerging challenges of digital curation and data science. ICPSR researchers also examine substantive issues related to our collections, with an emphasis on historical demography and the environment.
Proper citation: Inter-university Consortium for Political and Social Research (ICPSR) (RRID:SCR_003194) Copy
http://portal.ncibi.org/gateway/mimiplugin.html
The Cytoscape MiMI Plugin is an open source interactive visualization tool that you can use for analyzing protein interactions and their biological effects. The Cytoscape MiMI Plugin couples Cytoscape, a widely used software tool for analyzing bimolecular networks, with the MiMI database, a database that uses an intelligent deep-merging approach to integrate data from multiple well-known protein interaction databases. The MiMI database has data on 119,880 molecules, 330,153 interactions, and 579 complexes. By querying the MiMI database through Cytoscape you can access the integrated molecular data assembled in MiMI and retrieve interactive graphics that display protein interactions and details on related attributes and biological concepts. You can interact with the visualization by expanding networks to the next nearest neighbors and zooming and panning to relationships of interest. You also can perceptually encode nodes and links to show additional attributes through color, size and the visual cues. You can edit networks, link out to other resources and tools, and access information associated with interactions that has been mined and summarized from the research literature information through a biology natural language processing database (BioNLP) and a multi-document summarization system, MEAD. Additionally, you can choose sub-networks of interest and use SAGA, a graph matching tool, to match these sub-networks to biological pathways.
Proper citation: MiMI Plugin for Cytoscape (RRID:SCR_003424) Copy
http://edoctoring.ncl.ac.uk/Public_site/
Online educational tool that brings challenging clinical practice to your computer, providing medical education that is engaging, challenging and interactive. While there is no substitute for real-life direct contact with patients or colleagues, research has shown that interactive online education can be a highly effective and enjoyable method of learning many components of clinical medicine, including ethics, clinical management, epidemiology and communication skills. eDoctoring offers 25 simulated clinical cases, 15 interactive tutorials and a virtual library containing numerous articles, fast facts and video clips. Their learning material is arranged in the following content areas: * Ethical, Legal and Social Implications of Genetic Testing * Palliative and End-of-Life Care * Prostate Cancer Screening and Shared Decision-Making
Proper citation: eDoctoring (RRID:SCR_003336) Copy
http://med.stanford.edu/narcolepsy.html
The Stanford Center for Narcolepsy was established in the 1980s as part of the Department of Psychiatry and Behavioral Sciences. Today, it is the world leader in narcolepsy research with more than 100 articles on narcolepsy to its name. The Stanford Center for Narcolepsy was the first to report that narcolepsy-cataplexy is caused by hypocretin (orexin) abnormalities in both animal models and humans. Under the direction of Drs. Emmanuel Mignot and Seiji Nishino, the Stanford Center for Narcolepsy today treats several hundred patients with the disorder each year, many of whom participate in various research protocols. Other research protocols are conducted in animal models of narcolespy. We are always looking for volunteers in our narcolepsy research studies. We are presently recruiting narcoleptic patients for genetic studies, drug clinical trials, hypocretin measurement studies in the CSF and functional MRI studies. Monetary gifts to the Center for Narcolepsy are welcome. If you wish to make the ultimate gift, please consider participating in our Brain Donation Program. To advance our understanding of the cause, course, and treatment of narcolepsy, in 2001 Stanford University started a program to obtain human brain tissue for use in narcolepsy research. Donated brains provide an invaluable resource and we have already used previously donated brains to demonstrate that narcolepsy is caused by a lack of a very specific type of cell in the brain, the hypocretin (orexin) neuron. While the brain donations do not directly help the donor, they provide an invaluable resource and a gift to others. The real answers as to what causes or occurrs in the brain when one has narcolepsy will only be definitively understood through the study of brain tissue. Through these precious donations, narcolepsy may eventually be prevented or reversible. We currently are seeking brains from people with narcolepsy (with cataplexy and without), idiopathic hypersomnia and controls or people without a diagnosed sleep disorder of excessive sleepiness. Control brains are quite important to research, as findings must always be compared to tissue of a non-affected person. Friends and loved ones of people who suffer with narcoleps may wish to donate to our program to help fill this very important need. Refer to the Movies tab for movies of Narcolepsy / Cataplexy.
Proper citation: Stanford Center for Narcolepsy (RRID:SCR_007021) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.