Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Public global Protein Data Bank archive of macromolecular structural data overseen by organizations that act as deposition, data processing and distribution centers for PDB data. Members are: RCSB PDB (USA), PDBe (Europe) and PDBj (Japan), and BMRB (USA). This site provides information about services provided by individual member organizations and about projects undertaken by wwPDB. Data available via websites of its member organizations.
Proper citation: Worldwide Protein Data Bank (wwPDB) (RRID:SCR_006555) Copy
http://cocomac.g-node.org/main/index.php?
Online access (html or xml) to structural connectivity ("wiring") data on the Macaque brain. The database has become by far the largest of its kind, with data extracted from more than four hundred published tracing studies. The main database, contains data from tracing studies on anatomical connectivity in the macaque cerebral cortex. Also available are a variety of tools including a graphical simulation workbench, map displays and the CoCoMac-Paxinos-3D viewer. Submissions are welcome. To overcome the problem of divergent brain maps ORT (Objective Relational Transformation) was developed, an algorithmic method to convert data in a coordinate- independent way based on logical relations between areas in different brain maps. CoCoMac data is used to analyze the organization of the cerebral cortex, and to establish its structure- function relationships. This includes multi-variate statistics and computer simulation of models that take into account the real anatomy of the primate cerebral cortex. This site * Provides full, scriptable open access to the data in CoCoMac (you must adhere to the citation policy) * Powers the graphical interface to CoCoMac provided by the Scalable Brain Atlas * Sports an extensive search/browse wizard, which automatically constructs complex search queries and lets you further explore the database from the results page. * Allows you to get your hands dirty, by using the custom SQL query service. * Displays connectivity data in tabular form, through the axonal projections service. CoCoMac 2 was initiated at the Donders Institute for Brain, Cognition and Behaviour, and is currently supported by the German neuroinformatics node and the Computational and Systems Neuroscience group at the Juelich research institute.
Proper citation: CoCoMac (RRID:SCR_007277) Copy
http://caps.ncbs.res.in/imotdb/
Comprehensive collection of spatially interacting motifs in proteins. Interacting motif database lists interacting motifs that are identified for all structural entries in PDB. Conserved patterns or finger prints are identified for individual structural entries and also grouped together for reporting common motifs shared among all superfamily members.
Proper citation: Database of Spatially Interacting Motifs in Proteins (RRID:SCR_007735) Copy
A long-term health research project which follows pregnant women and their offspring in a continuous health and developmental study. More than 14,000 mothers enrolled during pregnancy in 1991 and 1992, and the health and development of their children has been followed in great detail. The ALSPAC families have provided a vast amount of genetic and environmental information over the years which can be made available to researchers globally.
Proper citation: ALSPAC (RRID:SCR_007260) Copy
http://www.ucl.ac.uk/ploras#annotations:QXuC2C7REeaxtw-aEPo07Q
A research project investigating the difficulties of recovering language after stroke (aphasia). The overall aim of the study is to give future stroke survivors accurate predictions of their aphasia recovery by creating clinical tools and discerning why some patients recover from aphasia better than others.
Proper citation: Predicting Language Outcome and Recovery After Stroke (PLORAS) (RRID:SCR_014498) Copy
http://caps.ncbs.res.in/3dswap/index.html
Curated knowledegbase of protein structures that are reported to be involved in 3-dimensional domain swapping. 3DSwap provides literature curated information and structure related information about 3D domain swapping in proteins. Information about swapping, hinge region, swapped region, extent of swapping, etc. are extracted from original research publications after extensive literature curation.
Proper citation: 3DSwap (RRID:SCR_004133) Copy
http://www.hgsc.bcm.tmc.edu/content/hapmap-3-and-encode-3
Draft release 3 for genome-wide SNP genotyping and targeted sequencing in DNA samples from a variety of human populations (sometimes referred to as the HapMap 3 samples). This release contains the following data: * SNP genotype data generated from 1184 samples, collected using two platforms: the Illumina Human1M (by the Wellcome Trust Sanger Institute) and the Affymetrix SNP 6.0 (by the Broad Institute). Data from the two platforms have been merged for this release. * PCR-based resequencing data (by Baylor College of Medicine Human Genome Sequencing Center) across ten 100-kb regions (collectively referred to as ENCODE 3) in 712 samples. Since this is a draft release, please check this site regularly for updates and new releases. The HapMap 3 sample collection comprises 1,301 samples (including the original 270 samples used in Phase I and II of the International HapMap Project) from 11 populations, listed below alphabetically by their 3-letter labels. Five of the ten ENCODE 3 regions overlap with the HapMap-ENCODE regions; the other five are regions selected at random from the ENCODE target regions (excluding the 10 HapMap-ENCODE regions). All ENCODE 3 regions are 100-kb in size, and are centered within each respective ENCODE region. The HapMap 3 and ENCORE 3 data are downloadable from the ftp site.
Proper citation: HapMap 3 and ENCODE 3 (RRID:SCR_004563) Copy
A database of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). Users can analyze protein sequences for Pfam matches, view Pfam family annotation and alignments, see groups of related families, look at the domain organization of a protein sequence, find the domains on a PDB structure, and query Pfam by keywords. There are two components to Pfam: Pfam-A and Pfam-B. Pfam-A entries are high quality, manually curated families that may automatically generate a supplement using the ADDA database. These automatically generated entries are called Pfam-B. Although of lower quality, Pfam-B families can be useful for identifying functionally conserved regions when no Pfam-A entries are found. Pfam also generates higher-level groupings of related families, known as clans (collections of Pfam-A entries which are related by similarity of sequence, structure or profile-HMM).
Proper citation: Pfam (RRID:SCR_004726) Copy
http://www.compbio.dundee.ac.uk/gotcha/gotcha.php
GOtcha provides a prediction of a set of GO terms that can be associated with a given query sequence. Each term is scored independently and the scores calibrated against reference searches to give an accurate percentage likelihood of correctness. These results can be displayed graphically. Why is GOtcha different to what is already out there and why should you be using it? * GOtcha uses a method where it combines information from many search hits, up to and including E-values that are normally discarded. This gives much better sensitivity than other methods. * GOtcha provides a score for each individual term, not just the leaf term or branch. This allows the discrimination between confident assignments that one would find at a more general level and the more specific terms that one would have lower confidence in. * The scores GOtcha provides are calibrated to give a real estimate of correctness. This is expressed as a percentage, giving a result that non-experts are comfortable in interpreting. * GOtcha provides graphical output that gives an overview of the confidence in, or potential alternatives for, particular GO term assignments. The tool is currently web-based; contact David Martin for details of the standalone version. Platform: Online tool
Proper citation: GOtcha (RRID:SCR_005790) Copy
http://www.ebi.ac.uk/expressionprofiler/
THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. The EP:GO browser is built into EBI's Expression Profiler, a set of tools for clustering, analysis and visualization of gene expression and other genomic data. With it, you can search for GO terms and identify gene associations for a node, with or without associated subnodes, for the organism of your choice.
Proper citation: Expression Profiler (RRID:SCR_005821) Copy
http://www.ebi.ac.uk/thornton-srv/databases/FunTree/
FunTree provides a range of data resources to detect the evolution of enzyme function within distant structurally related clusters within domain super families as determined by CATH. To access the resource enter a specific CATH superfamily code or search for a structure / sequence / function (either via a EC code or KEGG ligand / reaction ID, PDB ID or UniProtKB ID). Or browse the resource via superfamily / function / structure / metabolites & reactions via the menu on the left panel. FunTree is a new resource that brings together sequence, structure, phylogenetic, chemical and mechanistic information for structurally defined enzyme superfamilies. Gathering together this range of data into a single resource allows the investigation of how novel enzyme functions have evolved within a structurally defined superfamily as well as providing a means to analyse trends across many superfamilies. This is done not only within the context of an enzyme''''s sequence and structure but also the relationships of their reactions. Developed in tandem with the CATH database, it currently comprises 276 superfamilies covering 1800 (70%) of sequence assigned enzyme reactions. Central to the resource are phylogenetic trees generated from structurally informed multiple sequence alignments using both domain structural alignments supplemented with domain sequences and whole sequence alignments based on commonality of multi-domain architectures. These trees are decorated with functional annotations such as metabolite similarity as well as annotations from manually curated resources such the catalytic site atlas and MACiE for enzyme mechanisms.
Proper citation: FunTree (RRID:SCR_006014) Copy
http://www.virtualflybrain.org
An interactive tool for neurobiologists to explore the detailed neuroanatomy, neuron connectivity and gene expression of the adult Drosophila melanogaster brain.
Proper citation: Virtual Fly Brain (RRID:SCR_004229) Copy
http://www.roslin.ed.ac.uk/about-roslin/
The world''s largest collection of tick cell lines, enabling scientists to carry out advanced research. This biobank is establishing a collection of all the continuous cell lines derived from ixodid and argasid ticks of medical and veterinary importance available worldwide now and in future. Ticks are blood feeding arthropods which transmit many human and animal diseases. Research into prevention and cure of these diseases, which are caused by viruses, bacteria and protozoa, is greatly assisted by the use of cell culture systems which enable study of both how tick cells function, and how and why ticks transmit these disease-causing pathogens. Cell lines will always be shipped to recipient laboratories as growing cultures, since we cannot guarantee successful resuscitation of frozen stabilates. Tick cells in culture can tolerate the range of temperatures experienced during transit by air for up to a week. Training: We will provide training in tick cell line care and maintenance. This is an essential component of successful transfer of tick cells to, and their establishment in, laboratories with little or no previous experience of tick cell culture. Recipient scientists (preferably the person who will actually look after the cells) can visit the biobank for between 2 days and 2 weeks, depending on their level of previous experience, to be trained in the specific approach and methods for tick cell cultivation. Establishment of new cell lines: In response to requests and on receipt of suitable starting material (engorged female or moulting nymphal ticks), we will attempt to establish new cell lines from tick species or strains which are not already represented in the collection. Deposition of new tick cell lines: We invite researchers anywhere in the world who have established new tick cell lines to deposit samples for safekeeping free of charge and, if requested, for distribution alongside the existing biobank portfolio.
Proper citation: Roslin Wellcome Trust Tick Cell Biobank (RRID:SCR_004228) Copy
http://www.sanger.ac.uk/cgi-bin/teams/team30/arnie
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 1,2023. Database that integrates the extracellular protein interaction network generated in our lab using AVEXIS technology with spatiotemporal expression patterns for all genes in the network. The tool allows users to browse the network by clicking on individual proteins, or by specifying the spatiotemporal parameters. Clicking on connector lines will allow users to compare stage-matched expression patterns for genes encoding interacting proteins. Additionally, users can rapidly search for their genes in the network using the BLAST server provided.
Proper citation: ARNIE (RRID:SCR_000514) Copy
http://www.nactem.ac.uk/biolexicon/
A large-scale English terminological database that contains over 2.2.M lexical entries (3.3M semantic relations), terminological variants and rich linguistic information (subcategorization frames) which supports text mining systems. It is primarily intended to support text mining and information retrieval in the biomedical domain. The BioLexicon provides specific information to help determine the relevant facts to be extracted. BioLexicon is available in a relational database format (MySQL dump format) and it adheres to the EAGLES/ISO standards for lexical resources.
Proper citation: BioLexicon (RRID:SCR_000589) Copy
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
Database to store and display somatic mutation information and related details and contains information relating to human cancers. The mutation data and associated information is extracted from the primary literature. In order to provide a consistent view of the data a histology and tissue ontology has been created and all mutations are mapped to a single version of each gene. The data can be queried by tissue, histology or gene and displayed as a graph, as a table or exported in various formats.
Some key features of COSMIC are:
* Contains information on publications, samples and mutations. Includes samples which have been found to be negative for mutations during screening therefore enabling frequency data to be calculated for mutations in different genes in different cancer types.
* Samples entered include benign neoplasms and other benign proliferations, in situ and invasive tumours, recurrences, metastases and cancer cell lines.
Proper citation: COSMIC - Catalogue Of Somatic Mutations In Cancer (RRID:SCR_002260) Copy
A not for profit organization to accelerate research into aging by sharing resources: providing access to cost and time effective, aged murine tissue through a biorepository and database of live ageing colonies, as well as promoting the networking of researchers and dissemination of knowledge through its online collaborative environment; MiCEPACE. ShARM will provide valuable resources for the scientific community while helping to reduce the number of animals used in vital research into aging. The biobank of tissue and networking facility will enable scientists to access shared research material and data. By making use of collective resources, the number of individual animals required in research experiments can be minimized. The project also has the added value of helping to reduce the costs of research by connecting scientists, pooling resource and combining knowledge. ShARM works in partnership with MRC Harwell and the Centre for Intergrated Research into Musculoskeletal Ageing (CIMA).
Proper citation: ShARM (RRID:SCR_003120) Copy
https://www.sanger.ac.uk/science/tools/reapr
Software tool to identify errors in genome assemblies without need for reference sequence. Can be used in any stage of assembly pipeline to automatically break incorrect scaffolds and flag other errors in assembly for manual inspection. Reports mis-assemblies and other warnings, and produces new broken assembly based on error calls.
Proper citation: Recognition of Errors in Assemblies using Paired Reads (RRID:SCR_017625) Copy
Software toolbox for quantitative MRI in neuroscience and clinical research. Open source and flexible tool for qMRI data handling and processing. Allows estimation of high quality multi parameter qMRI maps followed by spatial registration in common space for statistical analysis.
Proper citation: hMRI-toolbox (RRID:SCR_017682) Copy
https://www2.mrc-lmb.cam.ac.uk/groups/murshudov/content/balbes/balbes_layout.html
Software system for solving protein structures using x-ray crystallographic data. Automatic molecular replacement pipeline for molecular replacement in CCP4. Integrates into one system all components necessary for solving crystal structure by Molecular Replacement. System is automated so that it needs no user intervention when running combination of jobs such as model searching, molecular replacement and refinement.
Proper citation: BALBES (RRID:SCR_018763) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.