Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Brain Innovation B.V. is developing scientific software in the field of human and animal brain imaging, neural network simulation and computer-based experimental control. Our current major product, BrainVoyager QX, is a commercially available cross-platform neuroimaging tool, which is used in hundreds of labs across the planet. Turbo-BrainVoyager is an easy to use program for real-time data analysis, which allows to observe a subject''s or patient''s brain activity during an ongoing functional MRI scanning session. TMS Neuronavigator provides the hard- and software to navigate a TMS coil to desired anatomical or functionally defined brain regions. We also provide free software products. BrainVoyager Brain Tutor allows to learn about brain areas by clicking on rotatable 3D brain models. StimulDX is a powerful stimulation software based on Microsofts DirectX API, which we will make available for free download in the near future.
Proper citation: Brain Innovation: Home of the BrainVoyager Product Family (RRID:SCR_006660) Copy
The Japan Node of the INCF coordinates neuroinformatics activities within Japan and represents Japanese efforts in INCF. This site provides information about Japanese neuroinformatics platforms (NI Platforms) and the techniques and tools available from the International Neuroinformatics Coordinating Facility (INCF). The Neuroinformatics Japan Center (NIJC) will also supply techniques and tools developed at RIKEN BSI and at other research groups in Japan. INCF expects each national node to: 1. Actively formulate and implement the INCF Work Programs, 2. Coordinate and facilitate local neuroinformatics research activities at the national level, 3. Encourage neuroinformatics data sharing that conforms with INCF standards, and 4. Promote neuroinformatics development that supports the goals of INCF. The Neuroinformatics Japan Center (NIJC) represents the Japan Node. Together with the Japan Node Committee and the Platform Subcommittees, we promote domestic activities of neuroinformatics. Platform Subcommittee members collaborate to develop databases that are available for use on the website. Standing at the intersection of neuroscience and information science, the field of neuroinformatics develops the tools to house, share and analyze neuroscientific data, and to create computational models of brain. NIJC supports researchers developing and maintaining neuroscience databases, provides a portal for these databases and Neuroinformatics, and is designing the infrastructure for Neuroinformatics. It is also developing database technologies, and facilitates cooperation and distribution of the information stored in those databases. The activities of the Japan Node * Shaping domestic neuroinformatics research and directions (Japan Node Committee) * Advising on Intellectual Property Rights and protecting experimental subjects (Japan Node Committee) * Developing and publishing brain science databases (Platform Subcommittee) * Coordinating database management (Platform Subcommittee) * Disseminating neuroinformatics information via the web portal * Developing the infrastructure for brain science information and neuroinformatics * Supporting the development and diffusion of neuroinformatics technology
Proper citation: INCF Japan Node (RRID:SCR_006569) Copy
http://www.brainvoyager.com/products/braintutor.html
A free award-winning educational program that teaches you knowledge about the human brain through interactive exploration of rotatable 3D models. The models have been computed with BrainVoyager QX using original data from magnetic resonance imaging (MRI) scans. Besides having fun with the rotatable 3D models, the program contains information about the major lobes, gyri, sulci and Brodmann areas of the cerebral cortex. The program runs on Windows XP, Vista and Windows 7.
Proper citation: BrainVoyager Brain Tutor (RRID:SCR_006737) Copy
http://www.siumed.edu/alz/research%20Dementia.html
A brain autopsy program developed to serve the needs of Illinois families and individuals affected by dementing diseases and to advance dementia research by providing tissue to researchers studying dementing diseases. The SIU School of Medicine (SIU-SM) Dementia Brain Autopsy Program facilitates the postmortem process for families wishing to obtain an autopsy for a loved one. A brain autopsy provides family members with accurate information regarding the exact nature of their relative's dementia. This includes information about the possibility of an inherited disorder which may affect other family members. The brain autopsy also helps clinicians improve their clinical skills by identifying the precise cause of the clinical dementia.
Proper citation: SIU CADRD Dementia Brain Autopsy Program (RRID:SCR_006918) Copy
An interactive multiresolution brain atlas that is based on over 20 million megapixels of sub-micron resolution, annotated, scanned images of serial sections of both primate and non-primate brains and integrated with a high-speed database for querying and retrieving data about brain structure and function. Currently featured are complete brain atlas datasets for various species, including Macaca mulatta, Chlorocebus aethiops, Felis catus, Mus musculus, Rattus norvegicus, Tyto alba and many other vertebrates. BrainMaps is currently accepting histochemical, immunocytochemical, and tracer connectivity data, preferably whole-brain. In addition, they are interested in EM, MRI, and DTI data.
Proper citation: BrainMaps.org (RRID:SCR_006878) Copy
http://humanconnectome.org/consortia/
Project to map the neural pathways that underlie human brain function for several modalities of neuroimaging data including fMRI. The purpose of the Project is to acquire and share data about the structural and functional connectivity of the human brain. It will greatly advance the capabilities for imaging and analyzing brain connections, resulting in improved sensitivity, resolution, and utility, thereby accelerating progress in the emerging field of human connectomics. Altogether, the Human Connectome Project will lead to major advances in the understanding of what makes us uniquely human and will set the stage for future studies of abnormal brain circuits in many neurological and psychiatric disorders. The sixteen institutes and centers of the NIH Blueprint for Neuroscience have funded two major grants that will take complementary approaches to deciphering the brain's amazingly complex wiring diagram. An 11-institution consortium led by Washington University in St. Louis and the University of Minnesota received a 5-year grant to enable development and utilization of advanced Magnetic Resonance Imaging (MRI) methods to chart brain circuitry. A consortium led by Massachusetts General Hospital and the University of California at Los Angeles received a grant to enable building and refining a next-generation 3T MR scanner that improves the quality and spatial resolution with which brain connectivity data can be acquired at this field strength.
Proper citation: NIH Human Connectome Project (RRID:SCR_006942) Copy
http://brainatlas.mbi.ufl.edu/ImageGallery.php
Image Gallery of a 3D MRI Atlas of an Adult C57BL/6J Mouse Brain showing Slice Animation and 3D Animation including Axial, Coronal, Sagittal views. RealPlayer or Windows Media Player needs to be installed for viewing these animations.
Proper citation: MRM NeAt (Neurological Atlas) Mouse Brain Database Image Gallery (RRID:SCR_007032) Copy
http://www.nybb.hs.columbia.edu/
A brain bank which collects postmortem human brains to meet the needs of neuroscientists investigating specific psychiatric and neurological disorders. NYBB disburses tissue samples to investigating clinicians or scientists whose research has been approved by their Institutional Review Board. The tasks of the NYBB include: collection and processing of human postmortem brain samples for research; neuropathological evaluation and diagnosis; storage and computerized inventory of brain samples; and distribution of brain samples to investigating clinicians and scientists. Brains from individuals without neurological or psychiatric disorders are used as normal controls.
Proper citation: New York Brain Bank at Columbia University (RRID:SCR_007142) Copy
http://brainatlas.mbi.ufl.edu/Database/
Comprehensive three-dimensional digital atlas database of the C57BL/6J mouse brain based on magnetic resonance microscopy images acquired on a 17.6-T superconducting magnet. This database consists of: Individual MRI images of mouse brains; three types of atlases: individual atlases, minimum deformation atlases and probabilistic atlases; the associated quantitative structural information, such as structural volumes and surface areas. Quantitative group information, such as variations in structural volume, surface area, magnetic resonance microscopy image intensity and local geometry, have been computed and stored as an integral part of the database. The database augments ongoing efforts with other high priority strains as defined by the Mouse Phenome Database focused on providing a quantitative framework for accurate mapping of functional, genetic and protein expression patterns acquired by a myriad of technologies and imaging modalities. You must register First (Mandatory) and then you may Download Images and Data.
Proper citation: MRM NeAt (Neurological Atlas) Mouse Brain Database (RRID:SCR_007053) Copy
http://www.stanleyresearch.org/dnn/BrainResearchLaboratory/tabid/195/Default.aspx
It is a widely used resource for researchers trying to find the causes of, and better treatments for, schizophrenia, bipolar disorder and major depression. Brains were collected 1994 to 2005 with the permission of the families in a standardized manner, with half of each specimen being frozen and half fixed in formalin. Currently four cohorts are available for study; the Neuropathology Consortium consisting of 60 cases (15 each schizophrenia, bipolar disorder, depression, and controls), the Array Collection consisting of 105 cases (35 each schizophrenia, bipolar disorder, and controls), the Depression Collection consisting of 36 cases (12 each depression with psychosis, depression without psychosis, and controls), and the Parietal Collection of 48 cases (fixed inferior parietal sections from 24 each schizophrenia and controls). Since 1996, the Stanley Brain Collection has sent over 200,000 sections and 10,000 blocks of brain tissue to 240 research laboratories in 23 states and 20 foreign countries. All tissue has been provided to the researchers without charge. All costs for collecting, processing, and storing the brain tissue have been borne by The Stanley Medical Research Institute as a public service. All reasonable requests for brain tissue (over 90 percent of applications) have been honored. Researchers selected to receive tissue must sign an agreement that sets forth conditions for its use. Results received from researchers become part of the Stanley brain collection data set and will be used for integrative, multivariate analyses. In addition to overseeing the brain collection, the laboratory conducts research on the neuropathology of schizophrenia and bipolar disorder and on brain development. Many studies carried out at the Stanley Brain Research Laboratory are done in cooperation with studies at the Stanley Laboratory of Developmental Neurovirology.
Proper citation: Stanley Brain Collection (RRID:SCR_007062) Copy
http://www9.biostr.washington.edu/da.html
Atlases of human brain, thoracic viscera and knee designed for teaching gross anatomy. Also provides a neuroanatomy Interactive syllabus, suitable as a laboratory guide, with an instructive caption accompanying each image and interactive quizzes. The Digital Anatomist Project is motivated by the belief that anatomy is the basis of all the biomedical sciences (including clinical medicine). Manifestations of health and disease can be regarded as attributes of anatomical structures ranging in size from molecules to body parts. Therefore DAP''s goal is to represent anatomy in a comprehensive and consistent way, which should meet the needs of all biomedical applications that require anatomical knowledge. DAP has pursued two parallel tracks for representing anatomical information: 1. The generation of graphical models derived from cadaver and clinical imaging data; and 2. Symbolic modeling of the structures and relationships that constitute the human body. It''s initial work with graphical representations of anatomy provided the impetus and motivation for the National Library of Medicine to establish the Visible Human Project, and it''s symbolic modeling has enhanced NLM''s Unified Medical Language System in order to represent deep anatomical knowledge. In collaboration with the knowledge systems group at Stanford, it has now created a very large knowledge base which provides the foundation for the machine-based intelligence needed to remotely interact with biomedical image data.
Proper citation: Digital Anatomist Interactive Atlases Project (RRID:SCR_007060) Copy
http://www.wholebraincatalog.org/
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 26, 2016. An open source, downloadable, 3d atlas of the mouse brain and its cellular constituents that allows multi-scale data to be visualized in a seamless way, similar to Google earth. Data within the Catalog is marked up with annotations and can link out to additional data sources via a semantic framework. This next generation open environment has been developed to connect members of the neuroscience community to facilitate solutions for today's intractable challenges in brain research through cooperation and crowd sourcing. The client-server platform provides rich 3-D views for researchers to zoom in, out, and around structures deep in a multi-scale spatial framework of the mouse brain. An open-source, 3-D graphics engine used in graphics-intensive computer gaming generates high-resolution visualizations that bring data to life through biological simulations and animations. Within the Catalog, researchers can view and contribute a wide range of data including: * 3D meshes of subcellular scenes or brain region territories * Large 2D image datasets from both electron and light level microscopy * NeuroML and Neurolucida neuronal reconstructions * Protein Database molecular structures Users of the Whole Brain Catalog can: * Fit data of any scale into the international standard atlas coordinate system for spatial brain mapping, the Waxholm Space. * View brain slices, neurons and their animation, neuropil reconstructions, and molecules in appropriate locations * View data up close and at a high resolution * View their own data in the Whole Brain Catalog environment * View data within a semantic environment supported by vocabularies from the Neuroscience Information Framework (NIF) at http://www.neuinfo.org. * Contribute code and connect personal tools to the environment * Make new connections with related research and researchers 5 Easy Ways to Explore: * Explore the datasets across multiple scales. * View data closely at high resolution. * Observe accurately simulated neurons. * Readily search for content. * Contribute your own research.
Proper citation: Whole Brain Catalog (RRID:SCR_007011) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on February 07, 2013. A set of human neuroanatomical resources developed at the University of Hungary. Resources include an on-line brain atlas, a neuropathology atlas, functional neuroanatomy for neurologists and an extensive series of links to other neuroanatomy and neurological resources on the web. The original resources developed by this site include a set of neuropathological slides covering many neurological conditions, e.g., Alzheimer's disease, an atlas of normal human neuroanatomy based on unstained brain slices, along with histological images of brainstem and spinal cord. On-line quizzes are also provided. This is an excellent educational site and gateway to neurological resources on the web.
Proper citation: Neuroanatomy and Neuropathology on the Internet (RRID:SCR_007272) Copy
An open international project under the patronage of the Human Proteome Organisation (HUPO) that aims: To analyze the brain proteome of human as well as mouse models in healthy, neurodiseased and aged status with focus on Alzheimer's and Parkinson's Disease; To perform quantitative proteomics as well as complementary gene expression profiling on disease-related brain areas and bodily fluids; To advance knowledge of neurodiseases and aging in order to push new diagnostic approaches and medications; To exchange knowledge and data with other HUPO projects and national / international initiatives in the neuroproteomic field; To make neuroproteomic research and its results available in the scientific community and society. Recent work has shown that standards in proteomics and especially in bioinformatics are mandatory to allow comparable analyses, but still missing. To address this challenge, the HUPO BPP is closely working together with the HUPO Proteome Standards Initiative (HUPO PSI).
Proper citation: HUPO Brain Proteome Project (RRID:SCR_007302) Copy
Collects, stores, and distributes samples of nervous tissue, cerebrospinal fluid, blood, and other tissue from HIV-infected individuals. The NNTC mission is to bolster research on the effects of HIV infection on human brain by providing high-quality, well-characterized tissue samples from patients who died with HIV, and for whom comprehensive neuromedical and neuropsychiatric data were gathered antemortem. Researchers can request tissues from patients who have been characterized by: * degree of neurobehavioral impairment * neurological and other clinical diagnoses * history of drug use * antiretroviral treatments * blood and CSF viral load * neuropathological diagnosis The NNTC encourages external researchers to submit tissue requests for ancillary studies. The Specimen Query Tool is a web-based utility that allows researchers to quickly sort and identify appropriate NNTC specimens to support their research projects. The results generated by the tool reflect the inventory at a previous time. Actual availability at the local repositories may vary as specimens are added or distributed to other investigators.
Proper citation: National NeuroAIDS Tissue Consortium (RRID:SCR_007323) Copy
http://fmri.wfubmc.edu/software/PickAtlas
A software toolbox that provides a method for generating Region of Interest (ROI) masks based on the Talairach Daemon database. The atlases include Brodmann area, Lobar, Hemisphere, Anatomic Label (gyral anatomy), and Tissue type. The atlases have been extended to the vertex in MNI space, and corrected for the precentral gyrus anomaly. Additional atlases (including non-human atlases) can be added without difficulty., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: WFU PickAtlas (RRID:SCR_007378) Copy
https://github.com/BlueBrain/BluePyOpt
An extensible framework for data-driven model parameter optimization that wraps and standardizes several existing open-source tools. BluePyOpt abstracts the optimization and evaluation tasks into various reusable and flexible discrete elements according to established best-practices. It also provides methods for setting up both small- and large-scale optimizations on a variety of platforms.
Proper citation: BluePyOpt (RRID:SCR_014753) Copy
An online tool for managing and viewing datasets. Data can be viewed in 2D or 3D with activation points as points clouds or projections on the cortex surface. Data can be imported as a NIfTI file or a list of activation peaks and results can be exported as a PDF file.
Proper citation: linkRbrain (RRID:SCR_014562) Copy
http://brainmap.org/software.html#GingerALE
Software available from brainmap.org to perform meta-analyses via the activation likelihood estimation (ALE) method. It also includes the transforms for icbm2tal conversions.
Proper citation: GingerALE (RRID:SCR_014921) Copy
https://www.nitrc.org/projects/atpp
Integrated pipeline for tractography-based brain parcellation with automatic processing and massive parallel computing. ATPP offers a CLI version for parcellating multiple brain regions and a GUI version for parcellating a specific brain region. " ATPP completely follows the scientific cultural shift to open science, which aims at making scientific research including journal papers, lab notes, data, and, of course, workflow tools, accessible and transparent to all levels of society. ATPP is publicly accessible in Neuroimaging Informatics Tools and Resources Clearinghouse8 (NITRC) (https://www.nitrc.org/projects/atpp). Its source codes are hosted in GitHub9 (https://github.com/haililihai/ATPP_CLI; https://github.com/haililihai/ATPP_GUI), under the GNU generic purpose license version 310 (GPLv3), and are welcome to download and fork. The Digital Object Identifiers (DOIs) providing a persistent way to make digital data easily and uniquely citable was created from Zenodo11 platform with those GitHub repositories (ATPP CLI v2.0.0, doi: https://doi.org/10.5281/zenodo.239702; ATPP GUI v2.0.0, doi: https://doi.org/10.5281/zenodo.239705). "
Proper citation: Automatic Tractography-based Parcellation Pipeline (RRID:SCR_014815) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.