Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.seattle.eric.research.va.gov/VETR/Home.asp
The Vietnam Era Twin (VET) Registry is a closed cohort composed of approximately 7,000 middle-aged male-male twin pairs both of whom served in the military during the time of the Vietnam conflict (1964-1975). The Registry is a United States Department of Veterans Affairs (VA) resource that was originally constructed from military records; the Registry has been in existence for almost 20 years. It is one of the largest national twin registries in the US and currently has members living in all 50 states. Initially formed to address questions about the long-term health effects of service in Vietnam, the Registry has evolved into a resource for genetic epidemiological studies of mental and physical health conditions. Several waves of mail and telephone surveys have collected a wealth of health-related information on Registry twins, referred to as members. In addition to twins, selected adult offspring of twins and the mothers of those offspring are also VET Registry members. More recent data collection efforts have focused on specific sets of twin pairs and have conducted detailed clinical or laboratory testing. Selected Vietnam Era Registry Research Studies: * Veteran Health Study * VETSA 2: A Longitudinal Study of Cognitive Aging * Alcoholism Course thought Midlife: A Twin Family Study and Offspring of Twins: G, E and GxE Risk for Alcoholism * GE: Offspring of Twins with Substance Use Disorder * Mechanisms Linking Depression to Cardiovascular Risk (Twins Heart Study 2) * Post-traumatic Stress Disorder and Cardiovascular Disease * Biological Markers for Post-traumatic Stress Disorder (T3) * Memory and the Hippocampus in Vietnam-era Twins with PTSD (Time 3)
Proper citation: Vietnam Era Twin Registry (RRID:SCR_008807) Copy
http://blocks.fhcrc.org/blocks/codehop.html
This COnsensus-DEgenerate Hybrid Oligonucleotide Primer (CODEHOP) strategy has been implemented as a computer program that is accessible over the World-Wide Web and is directly linked from the BlockMaker multiple sequence alignment site for hybrid primer prediction beginning with a set of related protein sequences. This is a new primer design strategy for PCR amplification of unknown targets that are related to multiply-aligned protein sequences. Each primer consists of a short 3' degenerate core region and a longer 5' consensus clamp region. Only 3-4 highly conserved amino acid residues are necessary for design of the core, which is stabilized by the clamp during annealing to template molecules. During later rounds of amplification, the non-degenerate clamp permits stable annealing to product molecules. The researchers demonstrate the practical utility of this hybrid primer method by detection of diverse reverse transcriptase-like genes in a human genome, and by detection of C5 DNA methyltransferase homologs in various plant DNAs. In each case, amplified products were sufficiently pure to be cloned without gel fractionation. Sponsors: This work was supported in part by a grant from the M. J. Murdock Charitable Trust and by a grant from NIH. S. P. is a Howard Hughes Medical Institute Fellow of the Life Sciences Research Foundation., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 15,2026.
Proper citation: COnsensus-DEgenerate Hybride Oligonucleotide Primers (RRID:SCR_002875) Copy
An integrated resource for genomics and bioinformatics in vision research including expressed sequence tag (EST) data and sequence-verified cDNA clones for multiple eye tissues of several species, web-based access to human eye-specific SAGE data through EyeSAGE, and comprehensive, annotated databases of known human eye disease genes and candidate disease gene loci. All expression- and disease-related data are integrated in EyeBrowse, an eye-centric genome browser. NEIBank provides a comprehensive overview of current knowledge of the transcriptional repertoires of eye tissues and their relation to pathology. The data can be interrogated in several ways. Specific gene names can be entered into the search window. Alternatively, regions of the genome can be displayed. For example, entering two STS markers separated by a semicolon (e.g. RH18061;RH80175) allows the display of the entire chromosomal region associated with the mapping of a specific disease locus. ESTs for each tissue can then be displayed to help in the selection of candidate genes. In addition, sequences can be entered into a BLAST search and rapidly aligned on the genome, again showing eye derived ESTs for the same region. To see the same region at the full UCSC site, cut and paste the location from the position window of the genome browser. EyeBrowse includes a custom track display SAGE data for human eye tissues derived from the EyeSAGE project. The track shows the normalized sum of SAGE tag counts from all published eye-related SAGE datasets centered on the position of each identifiable Unigene cluster. This indicates relative activity of each gene locus in eye. Clicking on the vertical count bar for a particular location will bring up a display listing gene details and linking to specific SAGE counts for each eye SAGE library and comparisons with normalized sums for neural and non-neural tissues. To view or alter settings for the EyeSAGE track on EyeBrowse, click on the vertical gray bar at the left of the display. Other custom tracks display known eye disease genes and mapped intervals for candidate loci for retinal disease, cataract, myopia and cornea disease. These link back to further information at NEIBank.
Proper citation: NEIBank (RRID:SCR_007294) Copy
http://pathwaynet.princeton.edu/
Web user interface for interaction predictions of human gene networks and integrative analysis of user data types that takes advantage of data from diverse tissue and cell-lineage origins. Predicts presence of functional association and interaction type among human genes or its protein products on whole genome scale. Used to analyze experimetnal gene in context of interaction networks.
Proper citation: PathwayNet (RRID:SCR_017353) Copy
https://ccb-web.cs.uni-saarland.de/tissueatlas
Human miRNA tissue atlas. Database showing distribution of miRNA expression across human tissues.
Proper citation: TissueAtlas (RRID:SCR_017352) Copy
Open source software package for circuit level interpretation of human EEG/MEG data. Software tool for interpreting cellular and network origin of human MEG/EEG data. Simulates electrical activity of neocortical cells and circuits that generate primary electrical currents underlying EEG/MEG recordings. Designed for researchers and clinicians, without computational neural modeling experience, to develop and test hypothesis on circuit origin of their data.
Proper citation: Human Neocortical Neurosolver (RRID:SCR_017437) Copy
http://www.ariesepigenomics.org.uk/
Portal for epigenomic information on range of human tissues, including DNA methylation data on peripheral blood at multiple time points across lifecourse. Provides web interface to browse methylation variation between groups of individuals and across time.
Proper citation: Accessible Resource for Integrated Epigenomics Studies (RRID:SCR_017492) Copy
http://www.epigenomes.ca/data-release/
Network to connect Canadian epigenetics researchers and expand their reach to broader health research community in Canada and beyond. Curated epigenomics sequence focused on common human diseases.
Proper citation: Canadian Epigenetics, Environment and Health Research Consortium Network (RRID:SCR_017491) Copy
https://hirnetwork.org/consortium/hpac
Consortium is investigating physical and functional organization of human islet tissue environment, cell-cell relationships within pancreatic tissue ecosystem, and contributions of non endocrine components (acinar, ductal, vascular, perivascular, neuronal, lymphatic, immune) to islet cell function and dysfunction. HPAC consists of research grants as well as the Human Pancreas Analysis Program (HPAP).
Proper citation: HIRN Human Pancreas Analysis Consortium (RRID:SCR_017583) Copy
Software Java tool for quantitative analysis of behavior. Used to address any theoretical problem that requires complex sequence of actions to be scored by human observer. Runs on microcomputer providing Java Virtual Machine[TM] and has been tested on Windows[TM] and Macintosh[TM] systems. Legacy version (version 0.9) works on older systems (Macintosh OS-9 and Windows-98), while Version 1.0 works well on Macintosh OS-X and Windows XP systems. JWatcher Video works best on Windows XP systems and has reduced functionality running in Macintosh OS-X. JWatcher-Palm can be used to acquire data on Palm OS[TM] equipped device and analyze it on your main computer.
Proper citation: JWatcher (RRID:SCR_017595) Copy
National research consortium designed to discover and perform preliminary characterization of range of molecular transducers that underlie effects of physical activity in humans. Used to study molecular changes that occur during and after exercise and to advance understanding of how physical activity improves and preserves health. Six year program into mechanisms of how physical activity improves health and prevents disease led by NIH Office of Strategic Coordination, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute on Aging, and National Institute of Biomedical Imaging and Bioengineering.
Proper citation: MoTrPAC Data Hub (RRID:SCR_017611) Copy
http://www.cvm.ncsu.edu/ccmtr/
The mission of the CCMTR is to promote scientific discovery and facilitate its clinical application to achieve the goal of improving the health of animals and humans. The needs of the patients direct the emphasis of basic research, patient samples provide the critical resource to investigate the basis of disease, and patient participation in clinical studies is required to generate the evidence needed to apply new drugs, vaccines and technology to the broader patient population. Initiatives at the Center are designed to develop the multidisciplinary teams necessary to bring an idea from the lab to the patient. The Center is home to service cores that provide advanced technology, collect and store clinical patient samples, and perform clinical trials to validate new medical interventions. North Carolina State University''s College of Veterinary Medicine (CVM) is a dynamic community whose members are dedicated to preparing veterinarians and veterinarian scientists while advancing animal and human health from the cellular level through entire ecosystems.
Proper citation: Center for Comparative Medicine and Translational Research (RRID:SCR_008299) Copy
http://www.semel.ucla.edu/creativity/
The purpose of this center is to study the molecular, cellular, systems and cognitive mechanisms that result in cognitive enhancements and explain unusual levels of performance in gifted individuals, including extraordinary creativity. Additionally, by understating the mechanisms responsible for enhancements in performance we may be better suited to intervene and reverse disease states that result in cognitive deficits. One of the key topics addressed by the Center is the biological basis of cognitive enhancements, a topic that can be studied in human subjects and animal models. In the past much of the focus in the brain sciences has been on the study of brain mechanisms that degrade cognitive performance (for example, on mutations or other lesions that cause cognitive deficits). The Tennenbaum Center for the Biology of Creativity at UCLA enables an interdisciplinary team of leading scientists to advance knowledge about the biological bases of creativity. Starting with a pilot project program, a series of investigations was launched, spanning disciplines from basic molecular biology to cognitive neuroscience. Because the concept of creativity is multifaceted, initial efforts targeted refinement of the component processes necessary to generate novel, useful cognitive products. The identified core cognitive processes: 1.) Novelty Generation the ability to flexibly and adaptively generate products that are unique; 2.) Working Memory and Declarative Memory the ability to maintain, and then use relevant information to guide goal-directed performance, along with the capacity to store and retrieve this information; and 3.) Response Inhibition the ability to suppress habitual plans and substitute alternate actions in line with changing problem-solving demands. To study the basic mechanisms underlying these complex brain functions we use translational strategies. Starting from foundational studies in basic neuroscience, we forged an interdisciplinary strategy that permits the most advanced techniques for genetic manipulation and basic neurobiological research to be applied in close collaboration with human studies that converge on the same core cognitive processes. Our integrated research program aims to reveal the genetic architecture and fundamental brain mechanisms underlying creative cognition. The work holds enormous promise for both enhancing healthy cognitive performance and designing new treatments for diverse cognitive disorders. Sponsors: The Tennenbaum Center for the Biology of Creativity was inspired by the vision and generosity of Michael Tennenbaum.
Proper citation: Tennenbaum Center for the Biology of Creativity (RRID:SCR_000668) Copy
A software program that allows users to visualize and interpret human metabolim and expression profiling data by providing users with a bioinformatics framework. Its features include bulding and analyzing networks of genes and compounds, identifying enriched pathways from expression profiling data, and visualizing changes in metabolite data.
Proper citation: Metscape (RRID:SCR_014687) Copy
CRBS is a UCSD organized research unit (ORU) that exists to provide human resources, high technology equipment, and administrative services to researchers engaged in fundamental research on cell structure and function relationships in central nervous system processes, cardiovascular networking, and muscular contraction through multiple scales and modalities. CRBS scientists investigate these processes through invention, refinement, and deployment of sophisticated technologies, especially: - High-powered electron microscopes that reveal three-dimensional cell structures - State-of-the-art X-ray crystallography and magnetic resonance analysis that provide detail on protein structures at high-resolution - Laser-scanning and confocal light microscopes that reveal molecules tagged with fluorescent markers as they traffic within cells and pass transfer signals within and between cells - High performance computing and grid-based integration of distributed data CRBS facilitates an interdisciplinary infrastructure in which people from biology, medicine, chemistry, and physics can work with those from computer science and information technologies in collaborative research. Researchers share interests in the study of complex biological systems at many scales, from the structures of enzymes, proteins, and the body's chemical communications network at atomic and molecular levels, to an organism's physiology, strength, and support at cellular and tissue levels. The CRBS infrastructure integrates resources for high-performance computing, visualization, and database technologies, and the grid-integration of large amounts of archival storage data. The California Institute for Telecommunications and Information Technology (Cal-IT2) and the San Diego Supercomputer Center (SDSC) are collaborators in simulating the activity of biological systems, analyzing the results, and organizing the growing storehouse of biological information. CRBS is an entity evolving as research evolves. It forges interactions with biotechnology and biocomputing companies for technology transfer. Interaction, collaboration, and multiscale research produce new perspectives, reveal fruitful research topics, lead to the development of new technologies and drugs, and train a new generation of researchers in biological systems. Sponsors: CRBS is supported by the University of California at San Diego.
Proper citation: Center for Research in Biological Systems (RRID:SCR_002666) Copy
http://www.simulations-plus.com/Products.aspx?pID=13
Software program for advanced predictive modeling of Absorption, Distribution, Metabolism, Elimination, and Toxicity (ADMET) properties of chemical substances in the human body. ADMET Predictor can estimate a number of vital ADMET properties (listed below) from molecular structures and build predictive models of new properties from user's data.
Proper citation: ADMET Predictor (RRID:SCR_014903) Copy
http://www.brighamandwomens.org/Departments_and_Services/radiology/Research/BRIC/default.aspx
Imaging Core facility that provides a comprehensive research imaging service to meet the needs of investigators and research subjects using imaging facilities at Brigham and Women's Hospital (BWH). A unique feature of BRIC is the complete anonymity of research subjects. Research image scheduling, image acquisition and image storage are all kept completely separate from BWH clinical Radiology systems. The BRIC provides the administrative infrastructure, customer service architecture and institutional support to promote investigative applications of imaging technologies.
Proper citation: BWH Research Imaging Core (RRID:SCR_002708) Copy
http://www.scienceexchange.com/facilities/microarray-resource-core-bu
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 22,2024. Microarray Resource Core offers the full line of microarray products available from Affymetrix. This includes expression profiling, miRNA, exon, genotyping, resequencing, and tiling arrays. As part of our standard service, the resource provides assistance with experimental design and data analysis. Arrays for other organisms are available; please contact us for with specific requests.
Proper citation: Boston University Microarray Resource Core (RRID:SCR_012491) Copy
https://www.med.upenn.edu/scxc/
Offers in vivo services specializing in immunodeficient and xenograft models (PDX, humanized immune system). Facility has dedicated BSL2 barrier space equipped with optical imaging, for applications ranging from immunotherapy, cancer biology, infectious diseases and regenerative medicine. Offers services centered around repository of live and fully annotated cells from adult patients with hematologic malignancies (AML, ALL, MPN, MDS), and hematopoietic stem/progenitor cells from healthy donors (BM, CB, and FL).
Proper citation: Pennsylvania University Perelman School of Medicine Stem Cell and Xenograft Core Facility (RRID:SCR_010035) Copy
http://www.informatics.jax.org/humanDisease.shtml
Collection of published and potential mouse models of human disease, discovery of candidate genes and investigation of phenotypic similarity between mouse models and human patients. Mouse mutation, and phenotype and disease model data from Mouse Genome Informatics database are integrated with human gene to disease relationships from the National Center for Biotechnology Information and Online Mendelian Inheritance in Man and human disease to phenotype relationships from the Human Phenotype Ontology.
Proper citation: Human Mouse Disease Connection (RRID:SCR_017522) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.