Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Software integrated tool for conducting automatic and manual sequence alignment, inferring phylogenetic trees, mining web based databases, estimating rates of molecular evolution, and testing evolutionary hypotheses. Used for comparative analysis of DNA and protein sequences to infer molecular evolutionary patterns of genes, genomes, and species over time. MEGA version 4 expands on existing facilities for editing DNA sequence data from autosequencers, mining Web-databases, performing automatic and manual sequence alignment, analyzing sequence alignments to estimate evolutionary distances, inferring phylogenetic trees, and testing evolutionary hypotheses. MEGA version 6 enables inference of timetrees, as it implements RelTime method for estimating divergence times for all branching points in phylogeny.
Proper citation: MEGA (RRID:SCR_000667) Copy
https://www.ddbj.nig.ac.jp/dra/index-e.html
Archive database for output data generated by next-generation sequencing machines including Roche 454 GS System, Illumina Genome Analyzer, Applied Biosystems SOLiD System, and others. DRA is a member of the International Nucleotide Sequence Database Collaboration (INSDC) and archiving the data in a close collaboration with NCBI Sequence Read Archive (SRA) and EBI Sequence Read Archive (ERA). Please submit the trace data from conventional capillary sequencers to DDBJ Trace Archive., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: DDBJ Sequence Read Archive (RRID:SCR_001370) Copy
Database of peer-reviewed, continually updated annotation for the Pseudomonas aeruginosa PAO1 reference strain genome expanded to include all Pseudomonas species to facilitate cross-strain and cross-species genome comparisons with high quality comparative genomics. The database contains robust assessment of orthologs, a novel ortholog clustering method, and incorporates five views of the data at the sequence and annotation levels (Gbrowse, Mauve and custom views) to facilitate genome comparisons. Other features include more accurate protein subcellular localization predictions and a user-friendly, Boolean searchable log file of updates for the reference strain PAO1. The current annotation is updated using recent research literature and peer-reviewed submissions by a worldwide community of PseudoCAP (Pseudomonas aeruginosa Community Annotation Project) participating researchers. If you are interested in participating, you are invited to get involved. Many annotations, DNA sequences, Orthologs, Intergenic DNA, and Protein sequences are available for download.
Proper citation: Pseudomonas Genome Database (RRID:SCR_006590) Copy
Collection of data related to crop plant and model organism Zea mays. Used to synthesize, display, and provide access to maize genomics and genetics data, prioritizing mutant and phenotype data and tools, structural and genetic map sets, and gene models and to provide support services to the community of maize researchers. Data stored at MaizeGDB was inherited from the MaizeDB and ZmDB projects. Sequence data are from GenBank. Data are searchable by phenotype, traits, Pests, Gel Pattern, and Mutant Images.
Proper citation: MaizeGDB (RRID:SCR_006600) Copy
Database of Drosophila genetic and genomic information with information about stock collections and fly genetic tools. Gene Ontology (GO) terms are used to describe three attributes of wild-type gene products: their molecular function, the biological processes in which they play a role, and their subcellular location. Additionally, FlyBase accepts data submissions. FlyBase can be searched for genes, alleles, aberrations and other genetic objects, phenotypes, sequences, stocks, images and movies, controlled terms, and Drosophila researchers using the tools available from the "Tools" drop-down menu in the Navigation bar.
Proper citation: FlyBase (RRID:SCR_006549) Copy
https://github.com/uclinfectionimmunity/Decombinator
Software suite for analysis of T cell receptor repertoire data. Used for fast, efficient analysis of T cell receptor (TcR) repertoire samples, designed to be accessible to those with no previous programming experience.
Proper citation: Decombinator (RRID:SCR_006732) Copy
http://yetfasco.ccbr.utoronto.ca/
Collection of all available transcription factor (TF) specificities for the yeast Saccharomyces cerevisiae in Position Frequency Matrix (PFM) or Position Weight Matrix (PWM) formats. The specificities are evaluated for quality using several metrics. With this website, you can scan sequences with the motifs to find where potential binding sites lie, inspect precomputed genome-wide binding sites, find which TFs have similar motifs to one you have found, and download the collection of motifs. Submissions are welcome.
Proper citation: YeTFaSCo (RRID:SCR_006893) Copy
International collaboration producing an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts, in an effort to provide a foundation for investigating the relationship between genotype and phenotype. The genomes of about 2500 unidentified people from about 25 populations around the world were sequenced using next-generation sequencing technologies. Redundant sequencing on various platforms and by different groups of scientists of the same samples can be compared. The results of the study are freely and publicly accessible to researchers worldwide. The consortium identified the following populations whose DNA will be sequenced: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. The goal Project is to find most genetic variants that have frequencies of at least 1% in the populations studied. Sequencing is still too expensive to deeply sequence the many samples being studied for this project. However, any particular region of the genome generally contains a limited number of haplotypes. Data can be combined across many samples to allow efficient detection of most of the variants in a region. The Project currently plans to sequence each sample to about 4X coverage; at this depth sequencing cannot provide the complete genotype of each sample, but should allow the detection of most variants with frequencies as low as 1%. Combining the data from 2500 samples should allow highly accurate estimation (imputation) of the variants and genotypes for each sample that were not seen directly by the light sequencing. All samples from the 1000 genomes are available as lymphoblastoid cell lines (LCLs) and LCL derived DNA from the Coriell Cell Repository as part of the NHGRI Catalog. The sequence and alignment data generated by the 1000genomes project is made available as quickly as possible via their mirrored ftp sites. ftp://ftp.1000genomes.ebi.ac.uk ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes
Proper citation: 1000 Genomes: A Deep Catalog of Human Genetic Variation (RRID:SCR_006828) Copy
The HumanCyc database describes human metabolic pathways and the human genome. By presenting metabolic pathways as an organizing framework for the human genome, HumanCyc provides the user with an extended dimension for functional analysis of Homo sapiens at the genomic level. A computational pathway analysis of the human genome assigned human enzymes to predicted metabolic pathways. Pathway assignments place genes in their larger biological context, and are a necessary step toward quantitative modeling of metabolism. HumanCyc contains the complete genome sequence of Homo sapiens, as presented in Build 31. Data on the human genome from Ensembl, LocusLink and GenBank were carefully merged to create a minimally redundant human gene set to serve as an input to SRI''s PathoLogic software, which generated the database and predicted Homo sapiens metabolic pathways from functional information contained in the genome''s annotation. SRI did not re-annotate the genome, but worked with the gene function assignments in Ensembl, LocusLink, and GenBank. The resulting pathway/genome database (PGDB) includes information on 28,783 genes, their products and the metabolic reactions and pathways they catalyze. Also included are many links to other databases and publications. The Pathway Tools software/database bundle includes HumanCyc and the Pathway Tools software suite and is available under license. This form of HumanCyc is faster and more powerful than the Web version.
Proper citation: HumanCyc: Encyclopedia of Homo sapiens Genes and Metabolism (RRID:SCR_007050) Copy
http://goblet.molgen.mpg.de/cgi-bin/goblet2008/goblet.cgi
Tool that performs annotation based on GO and pathway terms for anonymous cDNA or protein sequences. It uses the species independent GO structure and vocabulary together with a series of protein databases collected from various sites, to perform a detailed GO annotation by sequence similarity searches. The sensitivity and the reference protein sets can be selected by the user. GOblet runs automatically and is available as a public service on our web server. GOblet expects query sequences to be in FASTA-Format (with header-lines). Protein and nucleotide sequences are accepted. Total size of all sequences submitted per request should not be larger than 50kb currently. For security reasons: Larger post's will be rejected. Due to limited capacities the queries may be processed in batches depending on the server load. The output of the BLAST job is filtered automatically and the relevant hits are displayed. In addition, the respective GO-terms are shown together with the complete GO-hierarchy of parent terms., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GOblet (RRID:SCR_006998) Copy
http://sites.huji.ac.il/malaria/
Data set of metabolic pathways for the malaria parasite based on the present knowledge of parasite biochemistry and on pathways known to occur in other unicellular eukaryotes. This site extracted the pertinent information from the universal sites and presented them in an educative and informative format. The site also includes, cell-cell interactions (cytoadherence and rosetting), invasion of the erythrocyte by the parasite and transport functions. It also contains an artistic impression of the ultrastructural morphology of the interaerythrocytic cycle stages and some details about the morphology of mitochondria and the apicoplast. Most pathways are relevant to the erythrocytic phase of the parasite cycle. All maps were checked for the presence of enzyme-coding genes as they are officially annotated in the Plasmodium genome (http://plasmodb.org/). The site is constructed in a hierarchical pattern that permits logical deepening: * Grouped pathways of major chemical components or biological process ** Specific pathways or specific process *** Chemical structures of substrates and products or process **** Names of enzymes and their genes or components of process Each map is linked to other maps thus enabling to verify the origin of a substrate or the fate of a product. Clicking on the EC number that appears next to each enzyme, connects the site to BRENDA, SWISSPROT ExPASy ENZYME, PlasmoDB and to IUBMB reaction scheme. Clicking of the name of a metabolite, connects the site to KEGG thus providing its chemical structure and formula. Next to each enzyme there is a pie that depicts the stage-dependent transcription of the enzyme''s coding gene. The pie is constructed as a clock of the 48 hours of the parasite cycle, where red signifies over-transcription and green, under-transcription. Clicking on the pie links to the DeRisi/UCSF transcriptome database.
Proper citation: Malaria Parasite Metabolic Pathways (RRID:SCR_007072) Copy
Integrative database of germ-line V genes from the immunoglobulin loci of human and mouse. It presents V gene sequences extracted from the EMBL nucleotide sequence database and Ensembl together with links to the respective source sequences. Based on the properties of the source sequences, V genes are classified into 3 different classes: * Class 1: genomic and rearranged evidence * Class 2: genomic evidence only * Class 3: rearranged evidence only This allows careful sequence quality validation by the user. References to other immunological databases ( KABAT, IMGT/LIGM and VBASE ) are given to provide all public annotation data for each V gene. The VBASE2 database can be accessed either by the Direct Query interface or by the DNAPLOT Query interface. The Sequences given by the user are aligned with DNAPLOT against the VBASE2 database. Direct Query allows to enter sequence IDs and names (Field 1), choose species, locus, V gene family and class (Field 2) or search for 100% sequences (Field 3). At the DNAPLOT Query, the sequences given by the user are aligned with DNAPLOT against the VBASE2 database. The DNAPLOT program offers V gene nucleotide sequence alignment referring to the IMGT V gene unique numbering. The Quick Search can be used either for Direct Query to search for sequence IDs and V gene names or for DNAPLOT Query for up to 5 sequences. The new Fab Analysis allows you to align Fab, scFab, scAb or scFv sequences with DNAPLOT against the VBASE2 database, where both heavy and light chain are analyzed.
Proper citation: VBASE2 (RRID:SCR_007082) Copy
http://www.mbio.ncsu.edu/BioEdit/bioedit.html
Software tool as biological sequence alignment editor written for Windows 95/98/NT/2000/XP/7 and sequence analysis program. Provides sequence manipulation and analysis options and links to external analysis programs to view and manipulate sequences with simple point and click operations., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: BioEdit (RRID:SCR_007361) Copy
http://hihg.med.miami.edu/software-download/seqem-version-1.0
Online tool for utilizing a genotype calling algorithm for next-generation sequence data.
Proper citation: SeqEM (RRID:SCR_002021) Copy
http://code.google.com/p/rnao/
An ontology to capture all aspects of RNA - from primary sequence to alignments, secondary and tertiary structure from base pairing and base stacking to sophisticated motifs.
Proper citation: RNA Ontology (RRID:SCR_003470) Copy
http://purl.obolibrary.org/obo/flu/
An application ontology established by a collaborative group of influenza researchers that includes consolidated influenza sequence and surveillance terms from resources such as the BioHealthBase (BHB), a Bioinformatics Resource Center (BRC) for Biodefense and Emerging and Re-emerging Infectious Diseases, the Centers for Excellence in Influenza Research and Surveillance (CEIRS)
Proper citation: Influenza Ontology (RRID:SCR_003346) Copy
http://blocks.fhcrc.org/blocks/codehop.html
This COnsensus-DEgenerate Hybrid Oligonucleotide Primer (CODEHOP) strategy has been implemented as a computer program that is accessible over the World-Wide Web and is directly linked from the BlockMaker multiple sequence alignment site for hybrid primer prediction beginning with a set of related protein sequences. This is a new primer design strategy for PCR amplification of unknown targets that are related to multiply-aligned protein sequences. Each primer consists of a short 3' degenerate core region and a longer 5' consensus clamp region. Only 3-4 highly conserved amino acid residues are necessary for design of the core, which is stabilized by the clamp during annealing to template molecules. During later rounds of amplification, the non-degenerate clamp permits stable annealing to product molecules. The researchers demonstrate the practical utility of this hybrid primer method by detection of diverse reverse transcriptase-like genes in a human genome, and by detection of C5 DNA methyltransferase homologs in various plant DNAs. In each case, amplified products were sufficiently pure to be cloned without gel fractionation. Sponsors: This work was supported in part by a grant from the M. J. Murdock Charitable Trust and by a grant from NIH. S. P. is a Howard Hughes Medical Institute Fellow of the Life Sciences Research Foundation., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 15,2026.
Proper citation: COnsensus-DEgenerate Hybride Oligonucleotide Primers (RRID:SCR_002875) Copy
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
Ultrafast and memory efficient tool for aligning sequencing reads to long reference sequences. Supports gapped, local, and paired end alignment modes. More suited to finding longer, gapped alignments in comparison with original Bowtie method.
Proper citation: Bowtie 2 (RRID:SCR_016368) Copy
https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermut.html
Web application for the analysis and detection of APOBEC-induced hypermutations. The first sequence in the input alignment will be used as the reference sequence, and each of the other sequences will be used as a query sequence.
Proper citation: Hypermut (RRID:SCR_014933) Copy
Software application that provides sequence editing, primer design, internet database searching, protein analysis, sequence confirmation, multiple sequence alignment, phylogenetic reconstruction, coding region analysis, agarose gel simulation and a variety of other functions.
Proper citation: MacVector (RRID:SCR_015700) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.