Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 22 showing 421 ~ 440 out of 569 results
Snippet view Table view Download 569 Result(s)
Click the to add this resource to a Collection

http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml

This resource gives information about the U.S. Human Genome Project, which was was a 13-year effort to to discover all the estimated 20,000-25,000 human genes and make them accessible for further biological study. The primary project goals were to: - identify all the approximately 20,000-25,000 genes in human DNA, - determine the sequences of the 3 billion chemical base pairs that make up human DNA, - store this information in databases, - improve tools for data analysis, - transfer related technologies to the private sector, and - address the ethical, legal, and social issues (ELSI) that may arise from the project. To help achieve these goals, researchers also studied the genetic makeup of several nonhuman organisms. These include the common human gut bacterium Escherichia coli, the fruit fly, and the laboratory mouse. These parallel studies helped to develop technology and interpret human gene function. Sponsors: The DOE Human Genome Program and the NIH National Human Genome Research Institute (NHGRI) together sponsored the U.S. Human Genome Project.

Proper citation: Human Genome Project Information (RRID:SCR_013028) Copy   


  • RRID:SCR_012813

    This resource has 10000+ mentions.

http://sift.bii.a-star.edu.sg/

Data analysis service to predict whether an amino acid substitution affects protein function based on sequence homology and the physical properties of amino acids. SIFT can be applied to naturally occurring nonsynonymous polymorphisms and laboratory-induced missense mutations. (entry from Genetic Analysis Software) Web service is also available.

Proper citation: SIFT (RRID:SCR_012813) Copy   


http://www.mrc-lmb.cam.ac.uk/genomes/dolop/

DOLOP is an exclusive knowledge base for bacterial lipoproteins by processing information from 510 entries to provide a list of 199 distinct lipoproteins with relevant links to molecular details. Features include functional classification, predictive algorithm for query sequences, primary sequence analysis and lists of predicted lipoproteins from 43 completed bacterial genomes along with interactive information exchange facility. This website along will have additional information on the biosynthetic pathway, supplementary material and other related figures. DOLOP also contains information and links to molecular details for about 278 distinct lipoproteins and predicted lipoproteins from 234 completely sequenced bacterial genomes. Additionally, the website features a tool that applies a predictive algorithm to identify the presence or absence of the lipoprotein signal sequence in a user-given sequence. The experimentally verified lipoproteins have been classified into different functional classes and more importantly functional domain assignments using hidden Markov models from the SUPERFAMILY database that have been provided for the predicted lipoproteins. Other features include: primary sequence analysis, signal sequence analysis, and search facility and information exchange facility to allow researchers to exchange results on newly characterized lipoproteins.

Proper citation: DOLOP: A Database of Bacterial Lipoproteins (RRID:SCR_013487) Copy   


http://genetics.bwh.harvard.edu/pph2/

Software tool which predicts possible impact of amino acid substitution on structure and function of human protein using straightforward physical and comparative considerations. PolyPhen-2 is new development of PolyPhen tool for annotating coding nonsynonymous SNPs.

Proper citation: PolyPhen: Polymorphism Phenotyping (RRID:SCR_013189) Copy   


  • RRID:SCR_000229

    This resource has 10+ mentions.

http://technelysium.com.au/?page_id=27

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 31,2023. Software which is able to assemble data from 454 and Illumina next-generation sequencers, with up to 100,000 sequences if 2 Gb RAM is available.

Proper citation: ChromasPro (RRID:SCR_000229) Copy   


  • RRID:SCR_000283

    This resource has 1+ mentions.

http://www.dnastar.com/t-seqmanpro.aspx

Software for analysis and DNA sequence assembly of Sanger data. It also provides visualizations and analysis of next-gen projects assembled by SeqMan NGen.

Proper citation: Lasergene's SeqMan Pro (RRID:SCR_000283) Copy   


  • RRID:SCR_000534

http://metagenomics.atc.tcs.com/SPHINX/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 1, 2023. Hybrid binning tool that achieves high binning efficiency by utilizing both "compositional" and "similarity" features of the query sequence during the binning process. SPHINX can analyze sequences in metagenomic data sets as rapidly as composition based approaches, but nevertheless has the accuracy and specificity of similarity based algorithms., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: SPHINX (RRID:SCR_000534) Copy   


http://www.isrec.isb-sib.ch/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. The Computational Cancer Genomics (CCG) group is dedicated to the development of analysis tools and databases relating molecular sequences and biological functions. Sponsors: This group is supported by the Swiss Institute of Bioinformatics (SIB).

Proper citation: Computational Cancer Genomics Group (RRID:SCR_000772) Copy   


http://www.genet.sickkids.on.ca/cftr/

Collection of mutations in CFTR gene for international cystic fibrosis genetics research community. Provides up to date information about individual mutations in CFTR gene. All known CFTR mutations and sequence variants have been converted to standard nomenclature recommended by Human Genome Variation Society. On line process for submission of new mutations has been added.While they continue to ensure quality of data, they urge international community to give them feedback and suggestions. Clinical information in this database relates only to details of discovery of specific mutations. As part of 2010 upgrade, CFTR1 joined new project called CFTR2 - Clinical and Functional TRanslation of CFTR. Links to CFTR2 for many mutations in CFTR1 will provide up-to-date summaries of genotype-phenotype information from patient registries around the world.

Proper citation: Cystic Fibrosis Mutation Database (RRID:SCR_000685) Copy   


  • RRID:SCR_000667

    This resource has 1000+ mentions.

http://megasoftware.net/

Software integrated tool for conducting automatic and manual sequence alignment, inferring phylogenetic trees, mining web based databases, estimating rates of molecular evolution, and testing evolutionary hypotheses. Used for comparative analysis of DNA and protein sequences to infer molecular evolutionary patterns of genes, genomes, and species over time. MEGA version 4 expands on existing facilities for editing DNA sequence data from autosequencers, mining Web-databases, performing automatic and manual sequence alignment, analyzing sequence alignments to estimate evolutionary distances, inferring phylogenetic trees, and testing evolutionary hypotheses. MEGA version 6 enables inference of timetrees, as it implements RelTime method for estimating divergence times for all branching points in phylogeny.

Proper citation: MEGA (RRID:SCR_000667) Copy   


  • RRID:SCR_001370

    This resource has 50+ mentions.

https://www.ddbj.nig.ac.jp/dra/index-e.html

Archive database for output data generated by next-generation sequencing machines including Roche 454 GS System, Illumina Genome Analyzer, Applied Biosystems SOLiD System, and others. DRA is a member of the International Nucleotide Sequence Database Collaboration (INSDC) and archiving the data in a close collaboration with NCBI Sequence Read Archive (SRA) and EBI Sequence Read Archive (ERA). Please submit the trace data from conventional capillary sequencers to DDBJ Trace Archive., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: DDBJ Sequence Read Archive (RRID:SCR_001370) Copy   


  • RRID:SCR_002338

    This resource has 5000+ mentions.

http://www.ncbi.nlm.nih.gov/SNP/

Database as central repository for both single base nucleotide substitutions and short deletion and insertion polymorphisms. Distinguishes report of how to assay SNP from use of that SNP with individuals and populations. This separation simplifies some issues of data representation. However, these initial reports describing how to assay SNP will often be accompanied by SNP experiments measuring allele occurrence in individuals and populations. Community can contribute to this resource.

Proper citation: dbSNP (RRID:SCR_002338) Copy   


http://camera.calit2.net/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 26, 2016; however, the URL provides links to associated projects and data. A suite of data query, download, upload, analysis and sharing tools serving the needs of the microbial ecology research community, and other scientists using metagenomics data.

Proper citation: Community Cyberinfrastructure for Advanced Marine Microbial Ecology Research and Analysis (RRID:SCR_002676) Copy   


http://www.cmhd.ca/genetrap/

Generate gene trap insertions using mutagenic polyA trap vectors, followed by sequence tagging to develop a library of mutagenized ES cells freely available to the scientific community. This library is searchable by sequence or key word searches including gene name or symbol, chromosome location, or Gene Ontology (GO) terms. In addition,they offer a custom email alert service in which researchers are able to submit search criteria. Researchers will receive automated e-mail notification of matching gene trap clones as they are entered into the library and database. The resource features the use of complementary second and third generation polyA trap vectors developed by the Stanford lab and the laboratory of Professor Yasumasa Ishida of the Nara Institute of Science and Technology (NAIST) in Japan to mutagenize murine embryonic stem (ES) cells. CMHD gene trap clones are distributed by the Canadian Mouse Mutant Repository(CMMR). Information about ordering, services, and pricing can be found on their web site (http://www.cmmr.ca/services/index.html)., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 15,2026.

Proper citation: Centre for Modeling Human Disease Gene Trap Resource (RRID:SCR_002785) Copy   


  • RRID:SCR_002890

    This resource has 1+ mentions.

http://www.hgsc.bcm.tmc.edu/content/honey-bee-genome-project

The HGSC has sequenced the honey bee, Apis mellifera. The version 4.0 assembly was released in March 2006 and published in October 2006. The genome sequence is being upgraded with additional sequence coverage. The honey bee is important in the agricultural community as a producer of honey and as a facilitator of pollination. It is a model organism for studying the following human health issues: immunity, allergic reaction, antibiotic resistance, development, mental health, longevity and diseases of the X chromosome. In addition, biologists are interested in the honey bee's social organization and behavioral traits. This project was proposed to the HGSC by a group of dedicated insect biologists, headed by Gene Robinson. Following a workshop at the HGSC and a honey bee white paper, the HGSC began the project in 2002. A 6-fold coverage WGS, BAC sequence from pooled arrays, and an initial genome assembly (Amel_v1.0) were released beginning in 2003. This has been a challenging project with difficulty in recovering AT-rich regions. The WGS data had lower coverage in AT-rich regions and BAC data from clones showed evidence of internal deletions. Additional reads from AT enriched DNA addressed these underrepresented regions. The current assembly Amel_4.0 was produced with Atlas and includes 2.7 million reads (1.8 Gb) or 7.5x coverage of the (clonable) genome. About 97% of STSs, 98% of ESTs, and 96% of cDNAs are represented in the 231 Mb assembly. About 2,500 reads were also produced from a strain of Africanized honey bee and SNPs were extracted. These were released in dbSNP and the NCBI Trace Archive. Analysis of the genome by a consortium of 20 labs has been completed. This produced a gene list derived from five different methods melded through the GLEAN software. Publications include a main paper in Nature and up to forty companion papers in Genome Research and Insect Molecular Biology. Sponsors: Sequencing of the honey bee is jointly funded by National Human Genome Research Institute (NHGRI) and the Department of Agriculture (USDA). Multiple drones from the same queen (strain DH4) were obtained from Danny Weaver of B. Weaver Apiaries. All libraries were made from DNA isolated from these drones. The honey bee BAC library (CHORI-224) was prepared by Pieter de Jong and Katzutoyo Osoegawa at the Children's Hospital Oakland Research Institute.

Proper citation: Honey Bee Genome Project (RRID:SCR_002890) Copy   


http://rana.lbl.gov/drosophila

A single source for sequences, assemblies, annotations and analyses of the genomes of members of the fruitfly genus Drosophlia. It is meant as resource for Drosophilists and other researchers interested in comparative analysis of these species and their genomes. There are pages for each species, as well as pages for different types of multi-species resources (e.g. alignments). If you have a public resource that will help this project, please consider making it available through this page by emailing multiple_at_fruitfly.org.

Proper citation: Assembly/Alignment/Annotation of 12 Related Drosophila Species (RRID:SCR_002921) Copy   


http://proteininformationresource.org/

Integrated public bioinformatics resource to support genomic, proteomic and systems biology research and scientific studies. Provides databases and protein sequence analysis tools to scientific community, including Protein Sequence Database which grew out from the Atlas of Protein Sequence and Structure. Conducts research in biomedical text mining and ontology, computational systems biology, and bioinformatics cyberinfrastructure. In 2002 PIR, along with its international partners, EBI (European Bioinformatics Institute) and SIB (Swiss Institute of Bioinformatics), were awarded a grant from NIH to create UniProt, a single worldwide database of protein sequence and function, by unifying the PIR-PSD, Swiss-Prot, and TrEMBL databases. Currently, PIR major activities include: i) UniProt (Universal Protein Resource) development, ii) iProClass protein data integration and ID mapping, iii) PRO protein ontology, and iv) iProLINK protein literature mining and ontology development. The FTP site provides free download for iProClass, PIRSF, and PRO.

Proper citation: Protein Information Resource (RRID:SCR_002837) Copy   


http://www.hgsc.bcm.tmc.edu/content/red-flour-beetle-genome-project

This portal provides information about the Tribolium castabeum Genome Project. The Tribolium castaneum genome sequence and its analysis has been published in Nature, two companion journal issues (IBMB and DGE) and numerous other publications listed below. The red flour beetle, Tribolium castaneum, a common pest that is also a genetic model for the Coleoptera. The genome has been sequenced to 7-fold coverage using a whole genome shotgun approach and assembled using the HGSC's assembly engine, Atlas, with methods employed for the Drosophila pseudoobscura genome assembly. Approximately 90% of the genome sequence has been mapped to chromosomes in collaboration with Dick Beeman (USDA ARS) and Sue Brown (Kansas State University). Access to the Data :- Genome Assembly: The long term home of the Tribolium genome is Beetlebase. Tcas 3.0 is now available in GenBank and on our FTP site. Note there are no restrictions of any kind on the Tribolium data as it has been published. Version 2 of the assembly, Tcas_2.0 is available for download using the FTP Data link in the sidebar. The assembly is described in detail in the README in that directory. T.cas_1.0 was a preliminary genome assembly that did not include large insert paired end information and has been moved to a previous assemblies folder. A genboree browser of the Tcas2.0 sequence is available here: There are also links to the genboree browser from the blast results (at the bottom of each reported HSP) if you use the blast server on this page. The original linear scaffold file, Tcas2.0/linearScaffolds/Tcas20050914-genome, posted on the ftp site did not include singleton contigs from the assembly and thus did not fully reflect the tribolium genome sequence, missing ~4.4Mb of sequence in 1860 contigs and reptigs or approximately 2.5% of the assembled sequence. A corrected Tcas20051011-genome file containing these missing sequences is now available on the ftp site. The blast databases have also been updated to reflect this change. All other data is correct, and not affected by this change. :- BLAST Searches: The BLAST link is located in the sidebar. :* Linearized chromosome and unplaced scaffold sequences :* Assembled contigs :* Bin0 unassembled reads and Repeat reads Traces are available from the NCBI Trace Archive by using the link in the sidebar, or by using NCBI MegaBLAST with a same species or cross species query. Sponsors: Funding for this project has been provided by the National Human Genome Research Institute (NHGRI U54 HG003273), which is part of the National Institutes of Health (NIH), and the U.S. Department of Agriculture's Agricultural Research Service (USDA ARS Agreement No. 58-5430-3-338).

Proper citation: Tribolium castaneum Genome Project (RRID:SCR_002848) Copy   


  • RRID:SCR_002846

    This resource has 5000+ mentions.

http://hapmap.ncbi.nlm.nih.gov/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A multi-country collaboration among scientists and funding agencies to develop a public resource where genetic similarities and differences in human beings are identified and catalogued. Using this information, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. All of the information generated by the Project will be released into the public domain. Their goal is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. HapMap project related data, software, and documentation include: bulk data on genotypes, frequencies, LD data, phasing data, allocated SNPs, recombination rates and hotspots, SNP assays, Perlegen amplicons, raw data, inferred genotypes, and mitochondrial and chrY haplogroups; Generic Genome Browser software; protocols and information on assay design, genotyping and other protocols used in the project; and documentation of samples/individuals and the XML format used in the project.

Proper citation: International HapMap Project (RRID:SCR_002846) Copy   


  • RRID:SCR_002906

    This resource has 100+ mentions.

http://hiv-web.lanl.gov/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 4, 2023. HIV Sequence Database is a database of annotated HIV sequences, plus a variety of tools and information for researchers studying HIV and SIV. The main aim of this website is to provide easy access to our sequence database, alignments, and the tools and interfaces we have produced. The HIV Sequence Database focuses on five primary goals: * Collecting HIV and SIV sequence data (all sequences since 1987) * Curating and annotating this data, and making it available to the scientific community * Computer analysis of HIV and related sequences * Production of software for the analysis of (sequence) data * The data and analyses on this site and published in a yearly printed publication, the HIV sequence Compendium, which is available free of charge.

Proper citation: HIV Sequence Database (RRID:SCR_002906) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X