Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://www.github.com/arq5x/poretools
Software toolkit for analyzing nanopore sequence data.
Proper citation: Poretools (RRID:SCR_015879) Copy
https://github.com/sanger-pathogens/ariba
Analysis software that identifies antibiotic resistance genes by running local assemblies. It can also be used for MLST calling.
Proper citation: Ariba (RRID:SCR_015976) Copy
Alignment analysis software tool for comparative mapping between two genome assemblies or between two different genomes. It can cache intermediate results to speed a comparisons of multiple sequences.
Proper citation: Atac (RRID:SCR_015980) Copy
https://github.com/kdmurray91/axe
Software for sequencing data analysis and demultiplexing. It can be used in situations where sequence reads contain the barcodes that uniquely distinguish samples.
Proper citation: Axe (RRID:SCR_015984) Copy
https://github.com/pezmaster31/bamtools/wiki
Software that provides both a C++ API and a command-line toolkit for reading, writing, and manipulating genome sequence alignment files in the BAM and SAM formats. It is used for research analysis and management of data produced by sequencing technologies.
Proper citation: Bamtools (RRID:SCR_015987) Copy
https://github.com/vasilislenis/G-Anchor
Software for comparing large genomes and exploiting highly conserved sequences as evolutionary-stable "anchors". The pipeline maps a newly sequenced genome (assembled in scaffolds) on a reference genome without the need of a supercomputer.
Proper citation: G-Anchor (RRID:SCR_016046) Copy
http://www.sanger.ac.uk/science/tools/seqtools
Software for sequence alignments that displays multiple match sequences aligned against a single genomic reference sequence. It can be used for manipulation, display and annotation of genomic data, to check the quality of an alignment, to find missing/misaligned sequence, and to identify splice sites and polyA sites.
Proper citation: Blixem (RRID:SCR_015994) Copy
http://sing.ei.uvigo.es/ALTER/
Web application to perform program-oriented conversion of DNA and protein alignments and transform between multiple sequence alignment formats. ALTER focuses on the specifications of mainstream alignment and analysis programs rather than on the conversion among more or less specific formats.
Proper citation: ALTER (RRID:SCR_015968) Copy
Database for genetic, genomic, phenotype, and disease data generated from rat research. Centralized database that collects, manages, and distributes data generated from rat genetic and genomic research and makes these data available to scientific community. Curation of mapped positions for quantitative trait loci, known mutations and other phenotypic data is provided. Facilitates investigators research efforts by providing tools to search, mine, and analyze this data. Strain reports include description of strain origin, disease, phenotype, genetics, immunology, behavior with links to related genes, QTLs, sub-strains, and strain sources.
Proper citation: Rat Genome Database (RGD) (RRID:SCR_006444) Copy
Database of peer-reviewed, continually updated annotation for the Pseudomonas aeruginosa PAO1 reference strain genome expanded to include all Pseudomonas species to facilitate cross-strain and cross-species genome comparisons with high quality comparative genomics. The database contains robust assessment of orthologs, a novel ortholog clustering method, and incorporates five views of the data at the sequence and annotation levels (Gbrowse, Mauve and custom views) to facilitate genome comparisons. Other features include more accurate protein subcellular localization predictions and a user-friendly, Boolean searchable log file of updates for the reference strain PAO1. The current annotation is updated using recent research literature and peer-reviewed submissions by a worldwide community of PseudoCAP (Pseudomonas aeruginosa Community Annotation Project) participating researchers. If you are interested in participating, you are invited to get involved. Many annotations, DNA sequences, Orthologs, Intergenic DNA, and Protein sequences are available for download.
Proper citation: Pseudomonas Genome Database (RRID:SCR_006590) Copy
Collection of data related to crop plant and model organism Zea mays. Used to synthesize, display, and provide access to maize genomics and genetics data, prioritizing mutant and phenotype data and tools, structural and genetic map sets, and gene models and to provide support services to the community of maize researchers. Data stored at MaizeGDB was inherited from the MaizeDB and ZmDB projects. Sequence data are from GenBank. Data are searchable by phenotype, traits, Pests, Gel Pattern, and Mutant Images.
Proper citation: MaizeGDB (RRID:SCR_006600) Copy
Database of Drosophila genetic and genomic information with information about stock collections and fly genetic tools. Gene Ontology (GO) terms are used to describe three attributes of wild-type gene products: their molecular function, the biological processes in which they play a role, and their subcellular location. Additionally, FlyBase accepts data submissions. FlyBase can be searched for genes, alleles, aberrations and other genetic objects, phenotypes, sequences, stocks, images and movies, controlled terms, and Drosophila researchers using the tools available from the "Tools" drop-down menu in the Navigation bar.
Proper citation: FlyBase (RRID:SCR_006549) Copy
https://github.com/uclinfectionimmunity/Decombinator
Software suite for analysis of T cell receptor repertoire data. Used for fast, efficient analysis of T cell receptor (TcR) repertoire samples, designed to be accessible to those with no previous programming experience.
Proper citation: Decombinator (RRID:SCR_006732) Copy
http://yetfasco.ccbr.utoronto.ca/
Collection of all available transcription factor (TF) specificities for the yeast Saccharomyces cerevisiae in Position Frequency Matrix (PFM) or Position Weight Matrix (PWM) formats. The specificities are evaluated for quality using several metrics. With this website, you can scan sequences with the motifs to find where potential binding sites lie, inspect precomputed genome-wide binding sites, find which TFs have similar motifs to one you have found, and download the collection of motifs. Submissions are welcome.
Proper citation: YeTFaSCo (RRID:SCR_006893) Copy
International collaboration producing an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts, in an effort to provide a foundation for investigating the relationship between genotype and phenotype. The genomes of about 2500 unidentified people from about 25 populations around the world were sequenced using next-generation sequencing technologies. Redundant sequencing on various platforms and by different groups of scientists of the same samples can be compared. The results of the study are freely and publicly accessible to researchers worldwide. The consortium identified the following populations whose DNA will be sequenced: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. The goal Project is to find most genetic variants that have frequencies of at least 1% in the populations studied. Sequencing is still too expensive to deeply sequence the many samples being studied for this project. However, any particular region of the genome generally contains a limited number of haplotypes. Data can be combined across many samples to allow efficient detection of most of the variants in a region. The Project currently plans to sequence each sample to about 4X coverage; at this depth sequencing cannot provide the complete genotype of each sample, but should allow the detection of most variants with frequencies as low as 1%. Combining the data from 2500 samples should allow highly accurate estimation (imputation) of the variants and genotypes for each sample that were not seen directly by the light sequencing. All samples from the 1000 genomes are available as lymphoblastoid cell lines (LCLs) and LCL derived DNA from the Coriell Cell Repository as part of the NHGRI Catalog. The sequence and alignment data generated by the 1000genomes project is made available as quickly as possible via their mirrored ftp sites. ftp://ftp.1000genomes.ebi.ac.uk ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes
Proper citation: 1000 Genomes: A Deep Catalog of Human Genetic Variation (RRID:SCR_006828) Copy
A web server designed to rapidly and accurately identify, annotate and graphically display prophage sequences within bacterial genomes or plasmids. It accepts either raw DNA sequence data or partially annotated GenBank formatted data and rapidly performs a number of database comparisons as well as phage cornerstone feature identification steps to locate, annotate and display prophage sequences and prophage features. Relative to other prophage identification tools, PHAST is up to 40 times faster and up to 15% more sensitive. It is also able to process and annotate both raw DNA sequence data and Genbank files, provide richly annotated tables on prophage features and prophage quality and distinguish between intact and incomplete prophage. PHAST also generates downloadable, high quality, interactive graphics that display all identified prophage components in both circular and linear genomic views. Databases available for download include Virus DB, Prophage and virus DB, Bacteria DB, and PHAST result DB. Pre-calculated genomes for viewing are also available.
Proper citation: PHAge Search Tool (RRID:SCR_005184) Copy
Portal supporting the North East Bioinformatics Collaborative''s project to sequence the genome of the Little Skate. Provided is a clearinghouse for Little Skate Genome Project and other publicly available Skate and Ray (Batoidea) genome data, and tools for data visualization and analysis. Little Skate Genome Project The little skate (Leucoraja erinacea) is a chondrichthyan (cartilaginous) fish native to the east coast of North America. Elasmobranchs (Skates, Rays, and Sharks) exhibit many fundamental vertebrate characteristics, including a neural crest, jaws and teeth, an adaptive immune system, and a pressurized circulatory system. These characteristics have been exploited to promote understanding about human physiology, immunology, stem cell biology, toxicology, neurobiology and regeneration. The development of standardized experimental protocols in elasmobranchs such as L. erinacea and the spiny dogfish shark (Squalus acanthias) has further positioned these organisms as important biomedical and developmental models. Despite this distinction, the only reported chondrichthyan genome is the low coverage (1.4x) draft genome of the elephant shark (Callorhinchus milii). To close the evolutionary gaps in available elasmobranch genome sequence data, and generate critical genomic resources for future biomedical study, the genome of L. erinacea is being sequenced by the North East Bioinformatics Collaborative (NEBC). As close evolutionary relatives, the little skate sequence will facilitate studies that employ dogfish shark and other elasmobranchs as model organisms. Skate tools include the SkateBLAST and the Skate Genome Browsers: Little Skate Mitochondrion, Thorny Skate Mitochondrion, and Ocellate Spot Skate Mitochondrion.
Proper citation: SkateBase (RRID:SCR_005302) Copy
http://www.glycosciences.de/modeling/sweet2/
Program that rapidly converts the primary sequence of a complex carbohydrate, as defined by standard nomenclature, directly into a reliable 3D molecular model by linking together preconstructed 3D molecular templates of monosaccharides in the manner specified by the sequence and then optimizing the 3D structure using the MM3 force field. The user interaction is supported by an input spreadsheet consisting of a grid of sugar symbol and connection type cells. Several ways to visualize and to output the generated structures and related information are implemented.
Proper citation: SWEET-DB (RRID:SCR_005324) Copy
http://www.biocomputing.it/digit/index.php
The Database of Immunoglobulins and Integrated Tools (DIG IT) is an integrated resource storing sequences of annotated immunoglobulin variable domains of NCBI database and enriched with tools for searching and analyzing them. It contains 145759 heavy chain sequences and 71404 light chain sequences (47168 kappa type and 24236 lambda type) with assigned canonical structures for the hypervariable loops and the data on the type of antigen as well as the pairing information of immunoglobulin heavy and light chains (9672 total pairs). The user can input the immunoglobulin variable domain sequence (amino acid or nucleotide) of interest (heavy chain variable domain sequence; light chain variable domain sequence or both) to retrieve the closest sequences (sorted according to e-value) with complete annotation. The user can also directly query the database by antigen type, canonical structure, germline family in accordance to the requirements.
Proper citation: DIG IT - Database of Immunoglobulins and Integrated Tools (RRID:SCR_005924) Copy
http://edwardslab.bmcb.georgetown.edu/ws/peptideMapper/
The PeptideMapper Web-Service provides alignments of peptide sequence alignments to proteins, mRNA, EST, and HTC sequences from Genbank, RefSeq, UniProt, IPI, VEGA, EMBL, and HInvDb. This mapping infrastructure is supported, in part, by the compressed peptide sequence database infrastructure (Edwards, 2007) which enables a fast, suffix-tree based mapping of peptide sequences to gene identifiers and a gene-focused detailed mapping of peptide sequences to source sequence evidence. The PeptideMapper Web-Service can be used interactively or as a web-service using either HTTP or SOAP requests. Results of HTTP requests can be returned in a variety of formats, including XML, JSON, CSV, TSV, or XLS, and in some cases, GFF or BED; results of SOAP requests are returned as SOAP responses. The PeptideMapper Web-Service maps at most 20 peptides with length between 5 and 30 amino-acids in each request. The number of alignments returned, per peptide, gene, and sequence type, is set to 10 by default. The default can be changed on the interactive alignments search form or by using the max web-service parameter.
Proper citation: PeptideMapper (RRID:SCR_005763) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.