Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://stormo.wustl.edu/ScerTF
Catalog of over 1,200 position weight matrices (PWMs) for 196 different yeast transcription factors (TFs). They've curated 11 literature sources, benchmarked the published position-specific scoring matrices against in-vivo TF occupancy data and TF deletion experiments, and combined the most accurate models to produce a single collection of the best performing weight matrices for Saccharomyces cerevisiae. ScerTF is useful for a wide range of problems, such as linking regulatory sites with transcription factors, identifying a transcription factor based on a user-input matrix, finding the genes bound/regulated by a particular TF, and finding regulatory interactions between transcription factors. Enter a TF name to find the recommended matrix for a particular TF, or enter a nucleotide sequence to identify all TFs that could bind a particular region.
Proper citation: ScerTF (RRID:SCR_006121) Copy
http://proteome.gs.washington.edu/software/bibliospec/documentation/index.html
BiblioSpec enables the identification of peptides from tandem mass spectra by searching against a database of previously identified spectra. This suite of software tools is for creating and searching MS/MS peptide spectrum libraries. BiblioSpec is available free of charge for noncommercial use through an interactive web-site at http://depts.washington.edu/ventures/UW_Technology/Express_Licenses/bibliospec.php The BiblioSpec package contains the following programs: * BlibBuild creates a library of peptide MS/MS spectra from MS2 files. * BlibFilter removes redundant spectra from a library. * BlibSearch searches a spectrum library for matches to query spectra, reporting the results in an SQT file. In addition to the primary programs, the following auxiliary programs are available: * BlibStats writes summary statistics describing a library. * BlibToMS2 writes a library in MS2 file format. * BlibUpdate adds, deletes, or annotates spectra. * BlibPpMS2 processes spectra (bins peaks, removes noise, normalizes intensity) as done in BlibSearch and prints the resulting spectra to a text file. Several reference libraries are available for download. These libraries are updated regularly and are for use under the Linux operating system. You will find libraries for * Escherichia coli * Saccharomyces cerevisiae * Caenorhabditis elegans
Proper citation: BiblioSpec (RRID:SCR_004349) Copy
A genome browser that includes mappings between genomic features and Affymetrix microarrays. Associated with annmap is: * a Bioconductor package, annmap that provides programmatic access to the underlying MySQL database tables (which are freely available for download on this site) * xmapbridge, a Bioconductor package that outputs numeric data in a form suitable for presentation in the browser. This is supported by XMapBridge, a Java client that sits on the local desktop and performs the graph rendering for the browser.
Proper citation: Annmap (RRID:SCR_011783) Copy
http://www.rcsb.org/#Category-welcome
Collection of structural data of biological macromolecules. Database of information about 3D structures of large biological molecules, including proteins and nucleic acids. Users can perform queries on data and analyze and visualize results.
Proper citation: Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) (RRID:SCR_012820) Copy
An information extracting and processing package for biological literature that can be used online or installed locally via a downloadable software package, http://www.textpresso.org/downloads.html Textpresso's two major elements are (1) access to full text, so that entire articles can be searched, and (2) introduction of categories of biological concepts and classes that relate two objects (e.g., association, regulation, etc.) or describe one (e.g., methods, etc). A search engine enables the user to search for one or a combination of these categories and/or keywords within an entire literature. The Textpresso project serves the biological and biomedical research community by providing: * Full text literature searches of model organism research and subject-specific articles at individual sites. Major elements of these search engines are (1) access to full text, so that the entire content of articles can be searched, and (2) search capabilities using categories of biological concepts and classes that relate two objects (e.g., association, regulation, etc.) or identify one (e.g., cell, gene, allele, etc). The search engines are flexible, enabling users to query the entire literature using keywords, one or more categories or a combination of keywords and categories. * Text classification and mining of biomedical literature for database curation. They help database curators to identify and extract biological entities and facts from the full text of research articles. Examples of entity identification and extraction include new allele and gene names and human disease gene orthologs; examples of fact identification and extraction include sentence retrieval for curating gene-gene regulation, Gene Ontology (GO) cellular components and GO molecular function annotations. In addition they classify papers according to curation needs. They employ a variety of methods such as hidden Markov models, support vector machines, conditional random fields and pattern matches. Our collaborators include WormBase, FlyBase, SGD, TAIR, dictyBase and the Neuroscience Information Framework. They are looking forward to collaborating with more model organism databases and projects. * Linking biological entities in PDF and online journal articles to online databases. They have established a journal article mark-up pipeline that links select content of Genetics journal articles to model organism databases such as WormBase and SGD. The entity markup pipeline links over nine classes of objects including genes, proteins, alleles, phenotypes, and anatomical terms to the appropriate page at each database. The first article published with online and PDF-embedded hyperlinks to WormBase appeared in the September 2009 issue of Genetics. As of January 2011, we have processed around 70 articles, to be continued indefinitely. Extension of this pipeline to other journals and model organism databases is planned. Textpresso is useful as a search engine for researchers as well as a curation tool. It was developed as a part of WormBase and is used extensively by C. elegans curators. Textpresso has currently been implemented for 24 different literatures, among them Neuroscience, and can readily be extended to other corpora of text.
Proper citation: Textpresso (RRID:SCR_008737) Copy
http://clipserve.clip.ubc.ca/topfind
An integrated knowledgebase focused on protein termini, their formation by proteases and functional implications. It contains information about the processing and the processing state of proteins and functional implications thereof derived from research literature, contributions by the scientific community and biological databases. It lists more than 120,000 N- and C-termini and almost 10,000 cleavages. TopFIND is a resource for comprehensive coverage of protein N- and C-termini discovered by all available in silico, in vitro as well as in vivo methodologies. It makes use of existing knowledge by seamless integration of data from UniProt and MEROPS and provides access to new data from community submission and manual literature curating. It renders modifications of protein termini, such as acetylation and citrulination, easily accessible and searchable and provides the means to identify and analyse extend and distribution of terminal modifications across a protein. The data is presented to the user with a strong emphasis on the relation to curated background information and underlying evidence that led to the observation of a terminus, its modification or proteolytic cleavage. In brief the protein information, its domain structure, protein termini, terminus modifications and proteolytic processing of and by other proteins is listed. All information is accompanied by metadata like its original source, method of identification, confidence measurement or related publication. A positional cross correlation evaluation matches termini and cleavage sites with protein features (such as amino acid variants) and domains to highlight potential effects and dependencies in a unique way. Also, a network view of all proteins showing their functional dependency as protease, substrate or protease inhibitor tied in with protein interactions is provided for the easy evaluation of network wide effects. A powerful yet user friendly filtering mechanism allows the presented data to be filtered based on parameters like methodology used, in vivo relevance, confidence or data source (e.g. limited to a single laboratory or publication). This provides means to assess physiological relevant data and to deduce functional information and hypotheses relevant to the bench scientist. TopFIND PROVIDES: * Integration of protein termini with proteolytic processing and protein features * Displays proteases and substrates within their protease web including detailed evidence information * Fully supports the Human Proteome Project through search by chromosome location CONTRIBUTE * Submit your N- or C-termini datasets * Contribute information on protein cleavages * Provide detailed experimental description, sample information and raw data
Proper citation: TopFIND (RRID:SCR_008918) Copy
http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/
IDEAL, Intrinsically Disordered proteins with Extensive Annotations and Literature, is a collection of knowledge on experimentally verified intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). IDEAL contains manually curated annotations on IDPs in locations, structures, and functional sites such as protein binding regions and posttranslational modification sites together with references and structural domain assignments. Protean segment One of the unique phenomena seen in IDPs is so-called the coupled folding and binding, where a short flexible segment can bind to its binding partner with forming a specific structure to act as a molecular recognition element. IDEAL explicitly annotates these regions as protean segment (ProS) when unstructured and structured information are both available in the region. Access to the data All the entries are tabulated in the list and individual entries can be retrieved by using the search tool at the upper-right corner in this page. IDEAL also provides the BLAST search, which can find homologs in IDEAL. All the information in IDEAL can be downloaded in the XML file.
Proper citation: IDEAL - Intrinsically Disordered proteins with Extensive Annotations and Literature (RRID:SCR_006027) Copy
MicrobesOnline is designed specifically to facilitate comparative studies on prokaryotic genomes. It is an entry point for operon, regulons, cis-regulatory and network predictions based on comparative analysis of genomes. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.
Proper citation: MicrobesOnline (RRID:SCR_005507) Copy
The Roth Laboratory is designing and interpreting large-scale experiments to understand pathway structure and its relationship to phenotype and human disease. Software for research focused on a specific research goal is available. Current experimental interests: * Exploiting parallel sequencing technology to phenotype all pairwise gene deletion combinations in S. cerevisiae, with initial application to genes involved in transcription. * Generation of S. cerevisiae strains carrying dozens of chosen targeted deletions, with initial application to delete all ABC transporters imparting multidrug resistance. * Targeted insertion of gene sets encoding entire human pathways into S. cerevisiae, with initial application to genes involved in drug metabolism. Current computational interests: * Systematic analysis of genetic interaction to reveal redundant systems and order of action in genetic pathways * Integrating large-scale studies - including phenotype, genetic epistasis, protein-protein and transcription-regulatory interactions and sequence patterns - to quantitatively assign function to genes and guide experimentation and disease association studies. * Alternative splicing and its relationship to protein interaction networks.
Proper citation: Roth Laboratory (RRID:SCR_005711) Copy
Data analysis service to predict the function of your favorite genes and gene sets. Indexing 1,421 association networks containing 266,984,699 interactions mapped to 155,238 genes from 7 organisms. GeneMANIA interaction networks are available for download in plain text format. GeneMANIA finds other genes that are related to a set of input genes, using a very large set of functional association data. Association data include protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. You can use GeneMANIA to find new members of a pathway or complex, find additional genes you may have missed in your screen or find new genes with a specific function, such as protein kinases. Your question is defined by the set of genes you input. If members of your gene list make up a protein complex, GeneMANIA will return more potential members of the protein complex. If you enter a gene list, GeneMANIA will return connections between your genes, within the selected datasets. GeneMANIA suggests annotations for genes based on Gene Ontology term enrichment of highly interacting genes with the gene of interest. GeneMANIA is also a gene recommendation system. GeneMANIA is also accessible via a Cytoscape plugin, designed for power users. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GeneMANIA (RRID:SCR_005709) Copy
http://llama.mshri.on.ca/gofish/GoFishWelcome.html
Software program, available as a Java applet online or to download, allows the user to select a subset of Gene Ontology (GO) attributes, and ranks genes according to the probability of having all those attributes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GoFish (RRID:SCR_005682) Copy
Freely accessible phenotype-centered database with integrated analysis and visualization tools. It combines diverse data sets from multiple species and experiment types, and allows data sharing across collaborative groups or to public users. It was conceived of as a tool for the integration of biological functions based on the molecular processes that subserved them. From these data, an empirically derived ontology may one day be inferred. Users have found the system valuable for a wide range of applications in the arena of functional genomic data integration.
Proper citation: Gene Weaver (RRID:SCR_003009) Copy
http://cbl-gorilla.cs.technion.ac.il/
A tool for identifying and visualizing enriched GO terms in ranked lists of genes. It can be run in one of two modes: * Searching for enriched GO terms that appear densely at the top of a ranked list of genes or * Searching for enriched GO terms in a target list of genes compared to a background list of genes.
Proper citation: GOrilla: Gene Ontology Enrichment Analysis and Visualization Tool (RRID:SCR_006848) Copy
Web application that filters and links enriched output data identifying sets of associated genes and terms, producing metagroups of coherent biological significance. The method uses fuzzy reciprocal linkage between genes and terms to unravel their functional convergence and associations. It can also be accessed through its web service.
Proper citation: GeneTerm Linker (RRID:SCR_006385) Copy
http://www.kidneycenter.pitt.edu/cores/model_organisms.html
Core that uses the yeast S. cerevisiae and the zebrafish D. rerio to dissect fundamental aspects of kidney development and protein structure and function.
Proper citation: Pittsburgh Center for Kidney Research Model Organisms (RRID:SCR_015288) Copy
http://phenom.ccbr.utoronto.ca/index.jsp
Database of morphological phenotypes caused by mutation of essential genes in Saccharomyces cerevisiae, it allows storing, retrieving, visualizing and data mining the quantitative single-cell measurements extracted from micrographs of the temperature-sensitive (ts) mutant cells. PhenoM allows users to rapidly search and retrieve raw images and their quantified morphological data for genes of interest. The database also provides several data-mining tools, including a PhenoBlast module for phenotypic comparison between mutant strains and a Gene Ontology module for functional enrichment analysis of gene sets showing similar morphological alterations. About one-fifth of the genes in the budding yeast are essential for haploid viability and cannot be functionally assessed using standard genetic approaches such as gene deletion. To facilitate genetic analysis of essential genes, we and others have assembled collections of yeast strains expressing temperature-sensitive (ts) alleles of essential genes. To explore the phenotypes caused by essential gene mutation we used a panel of genetically engineered fluorescent markers to explore the morphology of cells in the ts strain collection using high-throughput microscopy. The database contains quantitative measurements of 1,909,914 cells and 78,194 morphological images for 775 temperature-sensitive mutants spanning 491 different essential genes in permissive temperature (26* C) and restrictive temperature (32* C). The morphological images were generated by high-content screening (HCS) technology.
Proper citation: PhenoM - Phenomics of yeast Mutants (RRID:SCR_006970) Copy
http://yetfasco.ccbr.utoronto.ca/
Collection of all available transcription factor (TF) specificities for the yeast Saccharomyces cerevisiae in Position Frequency Matrix (PFM) or Position Weight Matrix (PWM) formats. The specificities are evaluated for quality using several metrics. With this website, you can scan sequences with the motifs to find where potential binding sites lie, inspect precomputed genome-wide binding sites, find which TFs have similar motifs to one you have found, and download the collection of motifs. Submissions are welcome.
Proper citation: YeTFaSCo (RRID:SCR_006893) Copy
http://organelledb.lsi.umich.edu/
Database of organelle proteins, and subcellular structures / complexes from compiled protein localization data from organisms spanning the eukaryotic kingdom. All data may be downloaded as a tab-delimited text file and new localization data (and localization images, etc) for any organism relevant to the data sets currently contained in Organelle DB is welcomed. The data sets in Organelle DB encompass 138 organisms with emphasis on the major model systems: S. cerevisiae, A. thaliana, D. melanogaster, C. elegans, M. musculus, and human proteins as well. In particular, Organelle DB is a central repository of yeast protein localization data, incorporating results from both previous and current (ongoing) large-scale studies of protein localization in Saccharomyces cerevisiae. In addition, we have manually curated several recent subcellular proteomic studies for incorporation in Organelle DB. In total, Organelle DB is a singular resource consolidating our knowledge of the protein composition of eukaryotic organelles and subcellular structures. When available, we have included terms from the Gene Ontologies: the cellular component, molecular function, and biological process fields are discussed more fully in GO. Additionally, when available, we have included fluorescent micrographs (principally of yeast cells) visualizing the described protein localization. Organelle View is a visualization tool for yeast protein localization. It is a visually engaging way for high school and undergraduate students to learn about genetics or for visually-inclined researchers to explore Organelle DB. By revealing the data through a colorful, dimensional model, we believe that different kinds of information will come to light.
Proper citation: Organelle DB (RRID:SCR_007837) Copy
http://people.biochem.umass.edu/sfournier/fournierlab/snornadb/
A database of S. cerevisiae H/ACA and C/D box snoRNAs, useful for research on rRNA nucleotide modifications in the ribosome, especially those created by small nucleolar RNA:protein complexes (snoRNPs). The interactive service enables a user to visualize the positions of pseudouridines, 2'-O-methylations, and base methylations in three-dimensional space in the ribosome and also in linear and secondary structure formats of ribosomal RNA. The tools provide additional perspective on where the modifications occur relative to functional regions within the rRNA and relative to other nearby modifications. This package of tools is presented as a major enhancement of an existing but significantly upgraded yeast snoRNA database. The other key features of the enhanced database include details of the base pairing of snoRNAs with target RNAs, genomic organization of the yeast snoRNA genes, and information on corresponding snoRNAs and modifications in other model organisms.
Proper citation: Yeast snoRNA Database (RRID:SCR_007980) Copy
http://mitominer.mrc-mbu.cam.ac.uk/
A database of mitochondrial proteomics data. It includes two sets of proteins: the MitoMiner Reference Set, which has 10477 proteins from 12 species; and MitoCarta, which has 2909 proteins from mouse and human mitochondrial proteins. MitoMiner provides annotation from the Gene Ontology (GO) and UniProt databases. This reference set contains all proteins that are annotated by either of these resources as mitochondrial in any of the species included in MitoMiner. MitoMiner data via is available via Application Programming Interface (API). The client libraries are provided in Perl, Python, Ruby and Java.
Proper citation: MitoMiner (RRID:SCR_001368) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.