Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 293 results
Snippet view Table view Download 293 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_014044

http://www.sci.utah.edu/cibc-research/highlights/24-research-highlights/cibc-highlights/221-scirun-biopse.html

A simulation software package which hosts a collection of algorithms used to run bioelectric field simulations inside of SCIRun. The software provided in the package may be used for geometric modeling, simulation, and visualization for solving bioelectric field problems.

Proper citation: BioPSE (RRID:SCR_014044) Copy   


  • RRID:SCR_016867

    This resource has 100+ mentions.

https://blake.bcm.edu/emanwiki/EMAN2

Software suite for processing data from transmission electron microscopes. Used in supercomputing facilities as a test application for large-scale computing. Used for single particle reconstruction, helical reconstruction, 2-D crystallography and whole-cell tomography.

Proper citation: EMAN (RRID:SCR_016867) Copy   


  • RRID:SCR_019110

    This resource has 1+ mentions.

https://run.biosimulations.org

Web tool for executing broad range of modeling studies and visualizing their results. Provides web interface for reusing any model. Models, simulations, and visualizations are available under licenses specified for each resource.

Proper citation: runBioSimulations (RRID:SCR_019110) Copy   


  • RRID:SCR_003424

    This resource has 1+ mentions.

http://portal.ncibi.org/gateway/mimiplugin.html

The Cytoscape MiMI Plugin is an open source interactive visualization tool that you can use for analyzing protein interactions and their biological effects. The Cytoscape MiMI Plugin couples Cytoscape, a widely used software tool for analyzing bimolecular networks, with the MiMI database, a database that uses an intelligent deep-merging approach to integrate data from multiple well-known protein interaction databases. The MiMI database has data on 119,880 molecules, 330,153 interactions, and 579 complexes. By querying the MiMI database through Cytoscape you can access the integrated molecular data assembled in MiMI and retrieve interactive graphics that display protein interactions and details on related attributes and biological concepts. You can interact with the visualization by expanding networks to the next nearest neighbors and zooming and panning to relationships of interest. You also can perceptually encode nodes and links to show additional attributes through color, size and the visual cues. You can edit networks, link out to other resources and tools, and access information associated with interactions that has been mined and summarized from the research literature information through a biology natural language processing database (BioNLP) and a multi-document summarization system, MEAD. Additionally, you can choose sub-networks of interest and use SAGA, a graph matching tool, to match these sub-networks to biological pathways.

Proper citation: MiMI Plugin for Cytoscape (RRID:SCR_003424) Copy   


  • RRID:SCR_002771

    This resource has 1+ mentions.

http://www.cbil.upenn.edu/RAD

THIS RESOURCE IS NO LONGER IN SERVICE, Documented on March 24, 2014. A resource for gene expression studies, storing highly curated MIAME-compliant studies (i.e. experiments) employing a variety of technologies such as filter arrays, 2-channel microarrays, Affymetrix chips, SAGE, MPSS and RT-PCR. Data were available for querying and downloading based on the MGED ontology, publications or genes. Both public and private studies (the latter viewable only by users having appropriate logins and permissions) were available from this website. Specific details on protocols, biomaterials, study designs, etc., are collected through a user-friendly suite of web annotation forms. Software has been developed to generate MAGE-ML documents to enable easy export of studies stored in RAD to any other database accepting data in this format. RAD is part of a more general Genomics Unified Schema (http://gusdb.org), which includes a richly annotated gene index (http://allgenes.org), thus providing a platform that integrates genomic and transcriptomic data from multiple organisms. NOTE: Due to changes in technology and funding, the RAD website is no longer available. RAD as a schema is still very much active and incorporated in the GUS (Genomics Unified Schema) database system used by CBIL (EuPathDB, Beta Cell Genomics) and others. The schema for RAD can be viewed along with the other GUS namespaces through our Schema Browser.

Proper citation: RNA Abundance Database (RRID:SCR_002771) Copy   


  • RRID:SCR_002720

    This resource has 1+ mentions.

http://www.credrivermice.org/

Project to provide Neuroscience Community with mouse strains that are suitable for tissue and cell-type-specific perturbation of gene function in nervous system. NIH Neuroscience Blueprint has established three centers in the USA for generation of genetically modified mice expressing CRE recombinases in nervous system on the C57BJ/6 genetic background. Mouse lines are generated at Cold Spring Harbor Lab, at Scripps Research Institute, and at Baylor College of Medicine.

Proper citation: CRE Driver Network (RRID:SCR_002720) Copy   


http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl

Database of embryonic expression patterns using a high throughput RNA in situ hybridization of the protein-coding genes identified in the Drosophila melanogaster genome with images and controlled vocabulary annotations. At the end of production pipeline gene expression patterns are documented by taking a large number of digital images of individual embryos. The quality and identity of the captured image data are verified by independently derived microarray time-course analysis of gene expression using Affymetrix GeneChip technology. Gene expression patterns are annotated with controlled vocabulary for developmental anatomy of Drosophila embryogenesis. Image, microarray and annotation data are stored in a modified version of Gene Ontology database and the entire dataset is available on the web in browsable and searchable form or MySQL dump can be downloaded. So far, they have examined expression of 7507 genes and documented them with 111184 digital photographs.

Proper citation: Patterns of Gene Expression in Drosophila Embryogenesis (RRID:SCR_002868) Copy   


http://www.icpsr.umich.edu/

Data archive of more than 500,000 files of research in the social sciences, hosting 16 specialized collections of data in education, aging, criminal justice, substance abuse, terrorism, and other fields. ICPSR comprises a consortium of about 700 academic institutions and research organizations providing training in data access, curation, and methods of analysis for the social science research community. ICPSR welcomes and encourages deposits of digital data. ICPSR's educational activities include the Summer Program in Quantitative Methods of Social Research external link, a comprehensive curriculum of intensive courses in research design, statistics, data analysis, and social methodology. ICPSR also leads several initiatives that encourage use of data in teaching, particularly for undergraduate instruction. ICPSR-sponsored research focuses on the emerging challenges of digital curation and data science. ICPSR researchers also examine substantive issues related to our collections, with an emphasis on historical demography and the environment.

Proper citation: Inter-university Consortium for Political and Social Research (ICPSR) (RRID:SCR_003194) Copy   


  • RRID:SCR_002968

http://www.mybiosoftware.com/population-genetics/332

A tool for SNP Search and downloading with local management. It also offers flanking sequence downloading and automatic SNP filtering. It requires Windows and .NET Framework.

Proper citation: SNPHunter (RRID:SCR_002968) Copy   


  • RRID:SCR_003336

    This resource has 1+ mentions.

http://edoctoring.ncl.ac.uk/Public_site/

Online educational tool that brings challenging clinical practice to your computer, providing medical education that is engaging, challenging and interactive. While there is no substitute for real-life direct contact with patients or colleagues, research has shown that interactive online education can be a highly effective and enjoyable method of learning many components of clinical medicine, including ethics, clinical management, epidemiology and communication skills. eDoctoring offers 25 simulated clinical cases, 15 interactive tutorials and a virtual library containing numerous articles, fast facts and video clips. Their learning material is arranged in the following content areas: * Ethical, Legal and Social Implications of Genetic Testing * Palliative and End-of-Life Care * Prostate Cancer Screening and Shared Decision-Making

Proper citation: eDoctoring (RRID:SCR_003336) Copy   


https://services.healthtech.dtu.dk/

Center for Biological Sequence Analysis of the Technical University of Denmark conducts basic research in the field of bioinformatics and systems biology and directs its research primarily towards topics related to the elucidation of the functional aspects of complex biological mechanisms. A large number of computational methods have been produced, which are offered to others via WWW servers. Several data sets are also available. The center also has experimental efforts in gene expression analysis using DNA chips and data generation in relation to the physical and structural properties of DNA. The on-line prediction services at CBS are available as interactive input forms. Most of the servers are also available as stand-alone software packages with the same functionality. In addition, for some servers, programmatic access is provided in the form of SOAP-based Web Services. The center also educates engineering students in biotechnology and systems biology and offers a wide range of courses in bioinformatics, systems biology, human health, microbiology and nutrigenomics.

Proper citation: DTU Center for Biological Sequence Analysis (RRID:SCR_003590) Copy   


http://www.loni.usc.edu/BIRN/Projects/Mouse/

Animal model data primarily focused on mice including high resolution MRI, light and electron microscopic data from normal and genetically modified mice. It also has atlases, and the Mouse BIRN Atlasing Toolkit (MBAT) which provides a 3D visual interface to spatially registered distributed brain data acquired across scales. The goal of the Mouse BIRN is to help scientists utilize model organism databases for analyzing experimental data. Mouse BIRN has ended. The next phase of this project is the Mouse Connectome Project (https://www.nitrc.org/projects/mcp/). The Mouse BIRN testbeds initially focused on mouse models of neurodegenerative diseases. Mouse BIRN testbed partners provide multi-modal, multi-scale reference image data of the mouse brain as well as genetic and genomic information linking genotype and brain phenotype. Researchers across six groups are pooling and analyzing multi-scale structural and functional data and integrating it with genomic and gene expression data acquired from the mouse brain. These correlated multi-scale analyses of data are providing a comprehensive basis upon which to interpret signals from the whole brain relative to the tissue and cellular alterations characteristic of the modeled disorder. BIRN's infrastructure is providing the collaborative tools to enable researchers with unique expertise and knowledge of the mouse an opportunity to work together on research relevant to pre-clinical mouse models of neurological disease. The Mouse BIRN also maintains a collaborative Web Wiki, which contains announcements, an FAQ, and much more.

Proper citation: Mouse Biomedical Informatics Research Network (RRID:SCR_003392) Copy   


  • RRID:SCR_004964

http://www.proconsortium.org/pro/

An ontological representation of protein-related entities by explicitly defining them and showing the relationships between them. Each PRO term represents a distinct class of entities (including specific modified forms, orthologous isoforms, and protein complexes) ranging from the taxon-neutral to the taxon-specific. The ontology has a meta-structure encompassing three areas: proteins based on evolutionary relatedness (ProEvo); protein forms produced from a given gene locus (ProForm); and protein-containing complexes (ProComp). NOTICE: The PRO ID format has changed from PRO: to PR: (e.g. PRO:000000563 is now PR:000000563).

Proper citation: PR (RRID:SCR_004964) Copy   


http://www.hmpdacc.org/

Common repository for diverse human microbiome datsets and minimum reporting standards for Common Fund Human Microbiome Project.

Proper citation: HMP Data Analysis and Coordination Center (RRID:SCR_004919) Copy   


  • RRID:SCR_005474

    This resource has 1+ mentions.

http://primegens.org/

A Web-based Tool for High-throughput Primer and Probe Design. The program has its different utilities available on its web server. A standalone version is also available. Algorithms: * SSPD - Sequence Specific Primer Design: to design primers for each of the specific sequences given by the user in the query input file against any alternate potential hybridization with any of the sequences given in the database input file. * PSPD - Probe Specific Primer Design: to design primers it selects the gene-specific fragments (probes) to design primer pairs for their PCR amplification. * FSPD Fragment Specific Primer Design: primer design algorithm used when there is a very long query sequence for which multiple primers are required for its amplification. * Check Binding Specificity * Probe Design Only: Probe design algorithm could be used to find sequence-specific probes, which doesn''t show any blast hit against database. Such probe design has been used for targeted sequencing like agilent sure-select technology with next-generation sequencing.

Proper citation: PRIMEGENS (RRID:SCR_005474) Copy   


  • RRID:SCR_005233

    This resource has 1+ mentions.

http://gds.nih.gov/

NIH established expectations for sharing data obtained through NIH-funded genome-wide association studies (GWAS) with the implementation of the GWAS Policy. Information and resources related to the GWAS Policy can be found on this website.

Proper citation: Genomic Datasharing (RRID:SCR_005233) Copy   


http://great.stanford.edu/public/html/splash.php

Data analysis service that predicts functions of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. The utility of GREAT extends to data generated for transcription-associated factors, open chromatin, localized epigenomic markers and similar functional data sets, and comparative genomics sets. Platform: Online tool

Proper citation: GREAT: Genomic Regions Enrichment of Annotations Tool (RRID:SCR_005807) Copy   


  • RRID:SCR_005787

    This resource has 1+ mentions.

http://umbbd.msi.umn.edu/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 27, 2014. Database containing information on microbial biocatalytic reactions and biodegradation pathways for primarily xenobiotic, chemical compounds. Its goal is to provide information on microbial enzyme-catalyzed reactions that are important for biotechnology. The reactions covered are studied for basic understanding of nature, biocatalysis leading to specialty chemical manufacture, and biodegradation of environmental pollutants. Individual reactions and metabolic pathways are presented with information on the starting and intermediate chemical compounds, the organisms that transform the compounds, the enzymes, and the genes. The present database has been successfully used to teach enzymology and use of biochemical Internet information resources to advanced undergraduate and graduate students, and is being expanded primarily with the help of such students. In addition to reactions and pathways, this database also contains Biochemical Periodic Tables and a Pathway Prediction System. * Search the UM-BBD for compound, enzyme, microorganism, pathway, or BT rule name; chemical formula; chemical structure; CAS Registry Number; or EC code. * Go to Pathways and Metapathways in the UM-BBD * Lists of 203 pathways; 1400 reactions; 1296 compounds; 916 enzymes; 510 microorganism entries; 245 biotransformation rules; 50 organic functional groups; 76 reactions of naphthalene 1,2-dioxygenase; 109 reactions of toluene dioxygenase; Graphical UM-BBD Overview; and Other Graphics (Metapathway and Pathway Maps and Reaction Mechanisms).

Proper citation: UM-BBD (RRID:SCR_005787) Copy   


  • RRID:SCR_005780

    This resource has 10000+ mentions.

Ratings or validation data are available for this resource

http://genome.ucsc.edu/

Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.

Proper citation: UCSC Genome Browser (RRID:SCR_005780) Copy   


http://science.education.nih.gov/home2.nsf/feature/index.htm

The NIH Office of Science Education (OSE) coordinates science education activities at the NIH and develops and sponsors science education projects in house. These programs serve elementary, secondary, and college students and teachers and the public. Activities * Develop curriculum supplements and other educational materials related to medicine and research through collaborations with scientific experts at NIH * Maintain a website as a central source of information about NIH science education resources * Establish national model programs in public science education, such as the NIH Mini-Med School and Science in the Cinema * Promote science education reform as outlined in the National Science Education Standards and related guidelines The OSE was established in 1991 within the Office of Science Policy of the Office of the Director of the National Institutes of Health. The NIH is the world''s foremost biomedical research center and the U.S. federal government''s focal point for such research. It is one of the components of the Department of Health and Human Services (HHS). The Office of Science Education (OSE) plans, develops, and coordinates a comprehensive science education program to strengthen and enhance efforts of the NIH to attract young people to biomedical and behavioral science careers and to improve science literacy in both adults and children. The function of the Office is as follows: (1) develops, supports, and directs new program initiatives at all levels with special emphasis on targeting students in grades kindergarten to 16, their educators and parents, and the general public; (2) advises NIH leadership on science education issues; (3) examines and evaluates research and emerging trends in science education and literacy for policy making; (4) works closely with the NIH extramural, intramural, women''s health, laboratory animal research, and minority program offices on science education special issues and programs to ensure coordination of NIH efforts; (5) works with NIH institutes, centers, and divisions to enhance communication of science education activities; and (6) works cooperatively with other public- and private-sector organizations to develop and coordinate activities.

Proper citation: NIH Office of Science Education (RRID:SCR_005603) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X