Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
Data set of raw anatomical and functional MR data from 72 patients with Schizophrenia and 75 healthy controls (ages ranging from 18 to 65 in each group). All subjects were screened and excluded if they had: history of neurological disorder, history of mental retardation, history of severe head trauma with more than 5 minutes loss of consciousness, history of substance abuse or dependence within the last 12 months. Diagnostic information was collected using the Structured Clinical Interview used for DSM Disorders (SCID). A multi-echo MPRAGE (MEMPR) sequence was used with the following parameters: TR/TE/TI = 2530/(1.64, 3.5, 5.36, 7.22, 9.08)/900 ms, flip angle = 7��, FOV = 256x256 mm, Slab thickness = 176 mm, Matrix = 256x256x176, Voxel size =1x1x1 mm, Number of echos = 5, Pixel bandwidth =650 Hz, Total scan time = 6 min. With 5 echoes, the TR, TI and time to encode partitions for the MEMPR are similar to that of a conventional MPRAGE, resulting in similar GM/WM/CSF contrast. Rest data was collected with single-shot full k-space echo-planar imaging (EPI) with ramp sampling correction using the intercomissural line (AC-PC) as a reference (TR: 2 s, TE: 29 ms, matrix size: 64x64, 32 slices, voxel size: 3x3x4 mm3). Slice Acquisition Order: Rest scan - collected in the Axial plane - series ascending - multi slice mode - interleaved MPRAGE - collected in the Sag plane - series interleaved - multi slice mode - single shot The following data are released for every participant: * Resting fMRI * Anatomical MRI * Phenotypic data for every participant including: gender, age, handedness and diagnostic information.
Proper citation: COBRE (RRID:SCR_010482) Copy
http://polygenicpathways.blogspot.com/
A blog concerning the relationships between genes, risk factors and immunity in Alzheimer's disease, autism, Bipolar disorder, multiple sclerosis, Parkinson's disease, schizophrenia and chronic fatigue.
Proper citation: PolygenicBlog (RRID:SCR_008789) Copy
https://clinicaltrials.gov/ct2/show/NCT00014001
The NIMH-funded Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Study was a nationwide public health-focused clinical trial that compared the effectiveness of older (first available in the 1950s) and newer (available since the 1990s) antipsychotic medications used to treat schizophrenia. These newer medications, known as atypical antipsychotics, cost roughly 10 times as much as the older medications. CATIE is the largest, longest, and most comprehensive independent trial ever done to examine existing therapies for this disease. Schizophrenia is a brain disorder characterized by hallucinations, delusions, and disordered thinking. The course of schizophrenia is variable, but usually is recurrent and chronic, often causing severe disability. Previous studies have shown that taking antipsychotic medications consistently is far more effective than taking no medicine and that the drugs are necessary to manage the disease. The aim of the CATIE study was to determine which medications provide the best treatment for schizophrenia. Additional information may be found by following the links, http://www.nimh.nih.gov/trials/practical/catie/index.shtml, http://www.clinicaltrials.gov/ct/show/NCT00014001?order=1
Proper citation: CATIE - Clinical Antipsychotic Trials in Intervention Effectiveness (RRID:SCR_005615) Copy
http://www.nitrc.org/projects/mcic/
Expertly collected, well-curated data sets consisting of comprehensive clinical characterization and raw structural, functional and diffusion-weighted DICOM images in schizophrenia patients and gender and age-matched controls are now accessible to the scientific community through an on-line data repository (coins.mrn.org). This data repository will be useful to 1) educators in the fields of neuroimaging, medical image analysis and medical imaging informatics who need exemplar data sets for courses and workshops; 2) computer scientists and software algorithm developers for testing and validating novel registration, segmentation, and other analysis software; and 3) scientists who can study schizophrenia by further analysis of this cohort and/or by pooling with other data.
Proper citation: MCIC (RRID:SCR_002310) Copy
A listing of data sets from NIMH-supported clinical trials. Limited Access Datasets are available from numerous NIMH studies. NIMH requires all investigators seeking access to data from NIMH-supported trials held by NIMH to execute and submit as their request the appropriate Data Use Certification pertaining to the trial. The datasets distributed by NIMH are referred to as limited access datasets because access is limited to qualified researchers who complete Data Use Certifications.
Proper citation: Limited Access Datasets From NIMH Clinical Trials (RRID:SCR_005614) Copy
Biomedical Technology Resource Center that develops image processing and analysis techniques for basic and clinical neurosciences. The NAC research approach emphasizes both specific core technologies and collaborative application projects. The core activity of the center is the development of algorithms and techniques for postprocessing of imaging data. New segmentation techniques aid identification of brain structures and disease. Registration methods are used for relating image data to specific patient anatomy or one set of images to another. Visualization tools allow the display of complex anatomical and quantitative information. High-performance computing hardware and associated software techniques further accelerate algorithms and methods. Digital anatomy atlases are developed for the support of both interactive and algorithmic computational tools. Although the emphasis of the NAC is on the dissemination of concepts and techniques, specific elements of the core software technologies have been made available to outside researchers or the community at large. The NAC's core technologies serve the following major collaborative projects: Alzheimer's disease and the aging brain, morphometric measures in schizophrenia and schizotypal disorder, quantitative analysis of multiple sclerosis, and interactive image-based planning and guidance in neurosurgery. One or more NAC researchers have been designated as responsible for each of the core technologies and the collaborative projects.
Proper citation: Neuroimage Analysis Center (RRID:SCR_008998) Copy
http://www.schizophreniaforum.org/
The mission of the SRF is to help in the search for causes, treatments, and understanding of the devastating disease of schizophrenia. Our goal is to foster collaboration among researchers by providing an international online forum where ideas, research news, and data can be presented and discussed. The website is intended to bring together scientists working specifically on schizophrenia, scientists researching related diseases, and basic scientists whose work can shed light on these diseases. In this way, we hope that the Schizophrenia Research Forum will be a catalyst for creative thinking in the quest to understand a deeply complex disease. It is our goal to create and maintain up-to-date content of the highest quality. The website is free of charge to users, independent of industry sponsorship, and open to the public. Though geared toward researchers, we welcome other visitorspeople with mental illnesses, families, the media, and others who need accurate information on research into schizophrenia. We do, however, require that users who wish to post comments and other materials be registered members. All such materials are subject to approval by the editorial team. As a forum, we encourage participation and welcome feedback from the community.
Proper citation: Schizophrenia Research Forum (RRID:SCR_002899) Copy
National resource for investigators utilizing human post-mortem brain tissue and related biospecimens for their research to understand conditions of the nervous system. Federated network of brain and tissue repositories in the United States that collects, evaluates, stores, and makes available to researchers, brain and other tissues in a way that is consistent with the highest ethical and research standards. The NeuroBioBank ensures protection of the privacy and wishes of donors. Provides information to the public about the need for tissue donation and how to register as a donor.
Proper citation: NIH NeuroBioBank (RRID:SCR_003131) Copy
Data repository for neuroimaging data in DlCOM and NIFTI formats. It allows users to search for and freely download publicly available data sets relating to normal subjects and those with diagnoses such as: schizophrenia, ADHD, autism, and Parkinson's disease.XNAT-based image registry that supports both NIfTI and DICOM images to promote re-use and integration of NIH funded data.
Proper citation: NITRC-IR (RRID:SCR_004162) Copy
A public charity whose mission is to support the NIH in its mission to improve health, by forming and facilitating public-private partnerships for biomedical research and training. Its vision is Building Partnerships for Discovery and Innovation to Improve Health. The FNIH draws together the world''s foremost researchers and resources, pressing the frontier to advance critical discoveries. They are recognized as the number-one medical research charity in the countryleveraging support, and convening high level partnerships, for the greatest impact on the most urgent medical challenges we face today. Grants are awarded as part of a public-private partnership with the National Heart, Lung, and Blood Institute (NHLBI) on behalf of The Heart Truth in support of women''s heart health education and research. Funding for the Community Action Program is provided by the FNIH through donations from individuals and corporations including The Heart Truth partners Belk Department Stores, Diet Coke, and Swarovski. Successful biomedical research relies upon the knowledge, training and dedication of those who conduct it. Bringing multiple disciplines to bear on health challenges requires innovation and collaboration on the part of scientists. Foundation for NIH partnerships operate in a variety of ways and formats to recruit, train, empower and retain their next generation of researchers. From lectures and multi-week courses, to scholarships and awards through fellowships and residential training programs, their programs respond to the needs of scientists at every level and stage in their careers.
Proper citation: Foundation for the National Institutes of Health (RRID:SCR_004493) Copy
https://www.braintest.org/brain_test/BrainTest
A portal of online studies that encourage community participation to tackle the most challenging problems in neuropsychiatry, including attention-deficit / hyperactivity disorder, schizophrenia, and bipolar disorder. Our approach is to engage the community and try to recruit tens of thousands of people to spend an hour of their time on our site. You folks will provide data in both brain tests and questionnaires, as well as DNA, and in return, we will provide some information about your brain and behavior. You will also be entered to win amazon.com gift cards. While large collaborative efforts were made in genetics in order to discover the secrets of the human genome, there are still many mysteries about the behaviors that are seen in complex neuropsychiatric syndromes and the underlying biology that gives rise to these behaviors. We know that it will require studying tens of thousands of people to begin to answer these questions. Having you, the public, as a research partner is the only way to achieve that kind of investment. This site will try to reach that goal, by combining high-throughput behavioral assessment using questionnaires and game-like cognitive tests. You provide the data and then we will provide information and feedback about why you should help us achieve our goals and how it benefits everyone in the world. We believe that through this online study, we can better understand memory and attention behaviors in the general population and their genetic basis, which will in turn allow us to better characterize how these behaviors go awry in people who suffer from mental illness. In the end, we hope this will provide better, more personalized treatment options, and ultimately prevention of these widespread and extremely debilitating brain diseases. We will use the data we collect to try to identify the genetic basis for memory and impulse control, for example. If we can achieve this goal, maybe we can then do more targeted research to understand how the biology goes awry in people who have problems with cognition, including memory and impulse control, like those diagnosed with ADHD, Schizophrenia, Bipolar Disorder, and Autism Spectrum Disorders. By participating in our research, you can learn about mental illness and health and help researchers tackle these complex problems. We can''t do it without your help.
Proper citation: Brain Test (RRID:SCR_006212) Copy
http://intramural.nimh.nih.gov/gcap/index.htm
Schizophrenia related portal that aims to solve the mystery of genetic predisposition to psychosis, develop new methods for early diagnosis and prevention, and discover new treatments that will cure people suffering from it. Our objectives are to fully characterize: # neurobiological mechanisms related to susceptibility genes for schizophrenia and related clinical disorders; # genetic variation in aspects of cognition and emotionality associated with schizophrenia; and # small molecular targets for novel therapies. A unique feature of this Program is that its diverse scientific resources will be focused on a highly specific scientific agenda, that is to acquire the critical biological information about the susceptibility genes associated with schizophrenia and related illnesses. Our mission and goal, to understand the basic mechanisms of serious mental illness, has again guided us into new areas of research and to new insights. We have found evidence of new genes implicated in the cause of schizophrenia and involved in brain functions related to cognition and emotion and we have begun to explore how genes interact with each other and with the environment to individualize risk for these conditions. We are working now with over 20 genes related to schizophrenia. One of the key developments in our research over the past year has been the emergence of some targets for the development of novel therapeutics. We have discovered a new schizophrenia susceptibility gene, KCNH2, which represents the first clear target for the development of novel treatments. Just in this past year, for example, we published the first extensive statistical analysis of how schizophrenia genes may vary in their risk effects based on different genetic background (Nicodemus et al Hum Gen 2006), the first studies of schizophrenia genes interacting in effecting gene expression in brain (Lipska et al Hum Mol Genetics 2006a, Lipska et al Hum Mol Gen 2006 b); the first evidence that the mechanism of genetic association of NRG1 with schizophrenia involves a novel isoform of the gene in human brain (Law et al PNAS 2006), and the first evidence that MAOA may be linked to mood and impulse control because it effects critical mood regulatory neural networks (Meyer-Lindenberg et al PNAS 2006).
Proper citation: Genes Cognition and Psychosis Program (RRID:SCR_006292) Copy
http://www.brainnet-europe.org/index.php?option=com_content&view=article&id=99&Itemid=99
Sampling protocols produced by the BrainNet Europe Consortium generally with five types of dissection and brain processing procedures defined in all disease related protocols. * Fresh brain dissection * Fresh brain processing * Dissection of formalin-fixed brain * Histology and immunohistochemistry * Processing fresh brain
Proper citation: BrainNet Europe Sampling Protocols (RRID:SCR_000484) Copy
A drug discovery company focused on small-molecule drugs targeting G-protein-coupled receptors (GPCRs), the largest family of druggable targets. Heptares creates new medicines targeting previously undruggable or challenging GPCRs, a superfamily of receptors linked to many diseases. They are pioneering a structure-based drug design approach to GPCRs, leveraging proprietary technologies for protein stabilization, structure determination, and fragment-based discovery. Their partners include Cubist, MorphoSys, AstraZeneca, MedImmune and Takeda. Their objective is to build a broad pipeline of novel medicines to transform the treatment of serious diseases, including Alzheimer's disease, schizophrenia, diabetes, ADHD and chronic migraine.
Proper citation: Heptares Therapeutics (RRID:SCR_000499) Copy
A neuroscience network providing access to a database of brain, cognitive, genomic and clinical data for research and scientific publication. Data include genomic information, electrical measures of brain and body function, structural and functional MRI, and cognitive and medical history. All data are collected using a standardized assessment protocols. These data are from healthy people and those experiencing a range of brain-related illnesses.
Proper citation: BRAINnet-Brain Research And Integrative Neuroscience Network (RRID:SCR_000712) Copy
Atlas of developing human brain for studying transcriptional mechanisms involved in human brain development. Consists of RNA sequencing and exon microarray data profiling up to sixteen cortical and subcortical structures across full course of human brain development, high resolution neuroanatomical transcriptional profiles of about 300 distinct structures spanning entire brain for four midgestional prenatal specimens, in situ hybridization image data covering selected genes and brain regions in developing and adult human brain, reference atlas in full color with high resolution anatomic reference atlases of prenatal (two stages) and adult human brain along with supporting histology, magnetic resonance imaging (MRI) and diffusion weighted imaging (DWI) data.
Proper citation: Allen Human Brain Atlas: BrainSpan (Atlas of the Developing Brain) (RRID:SCR_008083) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on February 07, 2013. A multidisciplinary neuroscience laboratory in which basic and clinical scientists work side by side exploring neural mechanisms and models of mental and cognitive function and of neuropsychiatric illness. Experiments are performed at many levels of inquiry, from basic molecular biology of the gene to clinical examinations of patients. A major area of investigation of this laboratory is the genetic mechanisms implicated in the pathogenesis of schizophrenia and its treatment. The laboratory is organized as a multi-disciplinary team of investigators with a common mission: to identify and fully characterize basic genetic and neurobiological mechanisms of schizophrenia and related cognitive and emotional disorders. The various components of this effort are centered various different units or divisions represented by groups of investigators, at various levels of training and experience, working on related experiments. The Director of the Branch and of the Genes, Cognition and Psychosis Program (GCAP) is Daniel R. Weinberger, M.D. The CBDB is the principle research laboratory in the created (2003) Genes, Cognition, and Psychosis Program (GCAP) of the NIMH. After twelve years of residing on the pastoral grounds of St. Elizabeths Hospital, in Southeast Washington, CBDB moved back to the main NIH campus in Bethesda, Maryland in 1998. While the unique setting of St. Elizabeths is irreplaceable, we have occupied beautiful new laboratories and clinic spaces that were created for us, and we are in the mainstream of NIH life., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: NIMH Intramural Research Program Clinical Brain Disorders Branch (RRID:SCR_008728) Copy
http://www.bri.ucla.edu/research/resources
Brain bank resources which include postmortem human frozen brain tissue and matched cerebrospinal fluid (CSF) and blood available for scientists to search for etiopathogeneses of human disease. The National Neurological Research Specimen Bank and the Multiple Sclerosis Human Neurospecimen Bank maintains a collection of quick frozen and formalin fixed postmortem human brain tissue and frozen cerebrospinal fluid from patients with neurological diseases, including Alzheimer's Disease, amyotrophic lateral sclerosis, depressive disorder/suicide, and epilepsy, among others. Diagnoses are documented by clinical medical records and gross/microscopic neuropathology. The Neuropathology Laboratory at the UCLA Medical Center maintains a bank of frozen, formalin and paraformaldehyde-fixed and paraffin-embedded postmortem human brain tissues and frozen cerebrospinal fluid (CSF) from patients who die with Alzheimer's disease and other dementing and degenerative illnesses, as well as control materials removed in a similar fashion from patients who are neurologically normal.
Proper citation: Brain Research Institute Biobank Resources (RRID:SCR_008756) Copy
http://www.stanleyresearch.org/dnn/BrainResearchLaboratory/tabid/195/Default.aspx
It is a widely used resource for researchers trying to find the causes of, and better treatments for, schizophrenia, bipolar disorder and major depression. Brains were collected 1994 to 2005 with the permission of the families in a standardized manner, with half of each specimen being frozen and half fixed in formalin. Currently four cohorts are available for study; the Neuropathology Consortium consisting of 60 cases (15 each schizophrenia, bipolar disorder, depression, and controls), the Array Collection consisting of 105 cases (35 each schizophrenia, bipolar disorder, and controls), the Depression Collection consisting of 36 cases (12 each depression with psychosis, depression without psychosis, and controls), and the Parietal Collection of 48 cases (fixed inferior parietal sections from 24 each schizophrenia and controls). Since 1996, the Stanley Brain Collection has sent over 200,000 sections and 10,000 blocks of brain tissue to 240 research laboratories in 23 states and 20 foreign countries. All tissue has been provided to the researchers without charge. All costs for collecting, processing, and storing the brain tissue have been borne by The Stanley Medical Research Institute as a public service. All reasonable requests for brain tissue (over 90 percent of applications) have been honored. Researchers selected to receive tissue must sign an agreement that sets forth conditions for its use. Results received from researchers become part of the Stanley brain collection data set and will be used for integrative, multivariate analyses. In addition to overseeing the brain collection, the laboratory conducts research on the neuropathology of schizophrenia and bipolar disorder and on brain development. Many studies carried out at the Stanley Brain Research Laboratory are done in cooperation with studies at the Stanley Laboratory of Developmental Neurovirology.
Proper citation: Stanley Brain Collection (RRID:SCR_007062) Copy
A topical portal for the UAIS Lab of Lanzhou University which researches predicting depression and schizophrenia based on demographics and physiological information (EEG, ERPs, Genetics, MRI, fMRI, etc.). It also researches wearable bio-signal sensors and antennas, bio-signal processing, speech analysis, pervasive mental health, psycho-physiological computing, bioinformatics and multimodal data fusion and modeling.
Proper citation: Prediction and Diagnosis for Depression and Schizophrenia (RRID:SCR_014161) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.